项目技术介绍
使用了Python语言和Django框架完成系统的后端开发,前端Vue则利用ECharts库进行数据可视化,mysql数据库用于存储系统数据和用户数据。
开发语言:Python
框架:flask django
开发软件:PyCharm/vscode
数据库:mysql
数据库工具:Navicat for mysql
(Django Flask Vue Pycharm毕业设计项目 )
开发环境和技术详细介绍
Python 是一种高级编程语言,具有简洁、易读的语法和强大的库支持。Python 在本系统中主要用于数据处理和分析功能的实现
在本系统的开发过程中,PyCharm 为 Python 代码编写提供了高效的工作环境,能够帮助开发者快速编写、调试和优化代码。系统中的数据处理模块、职位推荐算法、招聘趋势分析等功能的实现都依赖于 PyCharm 提供的智能提示和代码自动完成功能。开发者可以通过 PyCharm 的调试工具实时跟踪代码执行过程,确保系统各个模块的逻辑正确性和性能优化。此外,PyCharm 强大的项目管理功能使得系统的多个功能模块能够高效地协作和管理。
Django用Python编写,属于开源Web应用程序框架。采用(模型M、视图V和模板t)的框架模式。该
框架以比利时吉普赛爵士吉他手詹戈·莱因哈特命名。该架构的主要组件如下:
1.用于创建模型的对象关系映射。
2.最终目标是为用户设计一个完美的管理界面。
3.是目前最流行的URL设计解决方案。
4.模板语言对设计师来说是最友好的。
5.缓存系统。
预期达到的目标
基于宠物信息交流管理系统以Python开发语言开发,MySQL为后台数据库,采用DJANGO/flask框架开发。。
1、学习系统开发和设计的技术相关知识和工作流程;
2、学习使用 PYCHARM 工具编辑前后台代码;
3、学习使用DJANGO/flask框架实现系统的开发;
4、掌握使用 MySQL 创建和编辑数据库的方法;
使用Navicat或者其它工具,在mysql中创建对应名称的数据库,并导入项目的sql文件;
使用PyCharm 导入项目,修改配置,运行项目;
将项目中config.ini配置文件中的数据库配置改为自己的配置,然后自动运行弹出;
部分效果具体实现截图
核心代码部分展示
#预测接口
def booksinfoforecast_forecast():
import datetime
if request.method in ["POST", "GET"]:#get、post请求
msg = {'code': normal_code, 'message': 'success'}
#获取数据集
req_dict = session.get("req_dict")
connection = pymysql.connect(**mysql_config)
query = "SELECT author,type,status,wordcount, monthcount FROM booksinfo"
#处理缺失值
data = pd.read_sql(query, connection).dropna()
id = req_dict.pop('id',None)
req_dict.pop('addtime',None)
df = to_forecast(data,req_dict,None)
#创建数据库连接,将DataFrame 插入数据库
connection_string = f"mysql+pymysql://{mysql_config['user']}:{mysql_config['password']}@{mysql_config['host']}:{mysql_config['port']}/{mysql_config['database']}"
engine = create_engine(connection_string)
try:
if req_dict :
#遍历 DataFrame,并逐行更新数据库
with engine.connect() as connection:
for index, row in df.iterrows():
sql = """
INSERT INTO booksinfoforecast (id
,monthcount
)
VALUES (%(id)s
,%(monthcount)s
)
ON DUPLICATE KEY UPDATE
monthcount = VALUES(monthcount)
"""
connection.execute(sql, {'id': id
, 'monthcount': row['monthcount']
})
else:
df.to_sql('booksinfoforecast', con=engine, if_exists='append', index=False)
print("数据更新成功!")
except Exception as e:
print(f"发生错误: {e}")
finally:
engine.dispose() # 关闭数据库连接
return jsonify(msg)
源码获取详细视频演示:文章底部获取博主联系方式!!!!
需要成品,加我们的时候,记得把本页面标题截图发下我,方便查找相应的源代码和演示视频。
如果你对本设计介绍不满意 文章最下方名片联系我即可~本系统包修改时间和标题,包安装部署运行调试,就是在你的电脑上运行起来
网络爬虫方面
Scrapy是一个Python编写的强大,灵活的网络爬虫框架和数据提取工具。它使用异步I/O网络库Twisted进行高效的爬取,并将提取到的数据存储到多种格式中。然而,在需要大规模爬取复杂的网站时,单机爬虫速度会受到限制。为了解决这个问题,Scrapy提供了分布式爬虫系统
网络爬虫是依靠预先设定好的规则而进行自动的抓取网络信息的过程 。网络爬虫通过解析网页,自动获取网页的数据。相较于人工去获取网页数据,无疑是要方便许多。本文使用 Python 的 Requests 库和 Beautifulsoup 库去解析链家网页,获取数据。同样是网络爬虫的一种。当然,网络爬虫也是有缺点的,它在对网页进行爬取时,可能会触发网页的反爬机制,从而导致失败。所以在编写爬虫程序的时候就要想办法绕过反爬机制,增加了工作量。而且网络爬虫必须要遵守相关法律法 规,不能够恶意的去爬取一些网站的信息。
论文书写提纲参考
第一章绪论,介绍了宠物信息交流管理系统的选题背景、选题意义、国内外研究现状以及研究内容,明确了本课题的研究目标和意义,提出了本文的研究方向,并简要概述了全文的组织结构。
第二章开发工具及相关技术简介,详细介绍了本系统开发过程中使用的主要工具和技术。首先,介绍了开发工具PyCharm的使用,其为本系统开发提供了高效的编程环境。然后,依次介绍了Python、Django、SqLite和ECharts等技术在系统中的应用,阐述了它们在实现数据处理、可视化以及数据库存储等方面的关键作用。
第三章系统分析,对本系统的可行性进行了详细分析,包括经济可行性、技术可行性和操作可行性,确保系统设计在实际环境中的可实施性。同时,功能需求和非功能需求也在本章中进行了分析,明确了系统需要具备的核心功能和性能要求。
第四章系统设计,重点阐述了系统的整体设计思路和各模块的设计细节。本章包括数据库设计、各功能模块的设计 以及模块之间的交互方式,保证系统在实现过程中的高效性和可扩展性。
第五章数据可视化实现, 确保系统数据呈现的直观性和可操作性。
第六章系统测试,阐述了宠物信息交流管理系统系统测试的目的和测试方法,列出了具体的测试内容,涵盖了功能测试、性能测试等方面的测试工作。并总结了测试结果,确保系统各项功能的稳定性与可靠性。
第七章结论与展望,回顾了本课题的主要工作和成果,提出了系统设计的创新点和不足之处,展望了未来的发展方向,并对系统的改进和扩展提出了建议。
结论心得
宠物信息交流管理系统在技术层面具有如下优点:
第一,Flask提供了更大的灵活性和简单性,适合小型项目和微服务。Django则提供了更多的内置功能,适合大型项目。Flask让开发者更多的控制其组件,而Django则遵循开箱即用的原则
Django 是一个高级 Python Web 框架,设计之初便注重快速开发和简化 Web 开发的复杂性。Django 在本系统中主要用于后端的开发,负责处理用户请求、管理数据模型和生成动态网页。
ECharts 是一个基于 JavaScript 的开源可视化图表库,用于展示各种交互式图表。在本系统中,ECharts 被广泛应用于数据的可视化部分,帮助用户直观地查看的各类分析结果。。
第三,后台使用的MySQL数据库系统,MySQL的数据库系统引擎主要集中在了对XML标准的支持,同时具备可扩充、容易应用和安全性高的优点。
综上所述,通过这次从零开始的毕业设计是一次全新的开始,也期待圆满结束。
我也希望这次的设计能通过我后期的自主学习把它趋向于完美,成为我的自主创作经验。