获取实时行情——网格量化

目标:建立网格交易系统,第一步: 需要获取目标股票的实时价格。

为什么选择它?,1.稳定性  2.品牌熟悉程度

市场上大部分的接口需要付费,免费版都有限流。

免费版的缺点 :因为限流 导致同时跟踪的股票数量少 ,ifind免费版 大概能跟踪到8-10只

现阶段基本满足我的需求。

1.下载同花顺 ifind 免费版 同花顺数据接口

2.申请账号
     首页有申请按钮,填写资料后,1-3天会收到电话,可以加微信获取到免费账号

3.打开ifind软件 登录,选择自己喜好的语言安装好环境。推荐 python 函数库很丰富 
 

4.代码 需要文件格式utf-8,

#coding:utf-8
from iFinDPy import *

if __name__ == '__main__':
    print('PyCharm')
    login_resp = THS_iFinDLogin("zhanghao","mima")
    print(login_resp)
    # 获取实时行情
    latest_resp:THSData = THS_RQ('000002.SZ','tradeDate;tradeTime;volume;sellVolume;latest')
    print(latest_resp)
    print('end!')

5. 需要安装python的numpy,pandas模块

************************************************************

ifind 1.登录接口,2.获取数据.

3.数据保存到本地数据库
4.读取交易规则配置
5.匹配规则
6.执行交易
7.统计分析交易结果

### 关于网格交易的免费资源开源项目 网格交易是一种自动化交易策略,其核心理念是在设定的价格区间内按照预定规则自动买卖资产。这种策略特别适合波动市场环境下的操作。 对于希望深入了解并实现网格交易的人来说,存在多个有价值的开源项目和教程可供参考: #### 使用 QuantStudio 进行网格交易策略开发 QuantStudio 提供了一个全面的平台来构建和测试量化交易模型[^3]。该框架不仅允许用户定义复杂的逻辑条件来进行买入卖出决策,还提供了丰富的API接口访问历史行情数据以及执行模拟订单的能力。因此非常适合用来设计基于特定参数设置(比如价格水平间距)上的网格交易方案。 #### 借助 FinRL-Trading 构建自适应型网格系统 FinRL-Trading 支持创建高度定制化的算法交易应用程序,并且能够很容易地集成机器学习组件以增强性能表现[^2]。这意味着可以通过训练神经网络或其他类型的预测器来动态调整网格宽度或触发阈值,从而提高收益潜力的同时降低风险暴露程度。 #### 利用 ElegantRL 实施强化学习驱动网格机制 ElegantRL 是一款专为简化复杂控制问题求解过程而打造的强大工具包;其中包含了众多经典的强化学习方法论及其变体本[^4]。借助这些先进的理论基础和技术手段,则有可能创造出一种更加智能化、响应迅速的新型网格结构——即让AI自主决定何时何价入场离场,进而达到最优效果。 ```python import numpy as np from elegantrl.agent import AgentPPO # 导入所需类库 class GridTradingStrategy(AgentPPO): def __init__(self, ... ): super().__init__() def decide(self,state): action = self.choose_action(state) upper_bound = state['price'] * (1 + grid_width) lower_bound = state['price'] * (1 - grid_width) if action == 'buy' and current_price <= lower_bound: return 'place_buy_order' elif action == 'sell'and current_price >= upper_bound : return 'place_sell_order' else: return None ``` 上述代码片段展示了如何继承 `AgentPPO` 类来自定义一个简单的网格交易代理程序。这里假设已经获取到了当前市场价格 (`current_price`) 和预设好的上下限(`upper/lower bound`) ,当满足一定条件下就会发出相应的买卖指令。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值