自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 链表基础知识个人汇总

对于链表,每个节点通常包含至少两个部分:数据部分和指针部分。数据部分存储节点的值,而指针部分存储指向链表中下一个节点的指针。通过节点的指针访问其指针部分,获取指向链表中下一个节点的指针。从头节点开始,通过节点的指针逐个访问链表中的每个节点。遍历链表,找到要删除的节点,并将其从链表中移除。通过节点的指针访问其数据部分,获取节点的值。创建一个新的节点对象,并将数据部分初始化为。将节点的指针部分设置为指向另一个节点。从头节点开始,遍历链表直到找到值为。反转链表中的节点的指针方向。将节点的数据部分设置为。

2024-09-24 09:42:35 275

原创 NVIDIA AI-AGENT夏季训练营

本项目旨在开发一个智能对话机器人,能够提取图片中的文字信息并进行相应的修改与生成。该系统主要应用于数据分析与可视化领域,能够帮助用户从图表中获取有价值的信息,并以自然语言与用户进行交互。项目的亮点在于其多模态能力,能够处理图像与文本的结合,提供直观的用户体验。项目评估本项目整体表现良好,成功实现了预期目标。通过智能对话机器人,用户能够高效地提取和修改数据,增强了数据分析的便捷性。但在图像识别的准确性和系统的稳定性方面仍有提升空间。未来方向。

2024-08-18 15:22:00 625

原创 NVIDID- RAG训练营学习分享

NVIDIA AI 训练营是一个为期3天的密集培训。通过讲座、实践工作坊和项目实践,我不仅学习到了理论知识,还有机会亲手操作和实现 AI 模型。通过这次 AI 训练营,我对人工智能的未来发展充满了期待。NVIDIA 不仅提供了强大的硬件支持,还有丰富的软件工具和框架,使得 AI 的学习和应用变得更加容易和高效。我期待将所学知识应用到我的工作和研究中,为人工智能的发展贡献自己的力量。我相信,随着技术的不断进步,人工智能将在未来扮演更加重要的角色,并为社会带来更多的可能性。---

2024-08-18 14:41:06 226

原创 语义地图 阅读分享

传感和映射其周围环境是一个移动的机器人的基本要求。几何地图赋予机器人基本任务的能力,例如,导航为了在室内场景中与人类共存,需要将语义信息附加到几何地图,这被称为语义地图,在过去的二十年中已经实现。语义地图可以帮助机器人按照人类规则行事,计划和执行高级任务,并在概念层面上与人类进行交流。本文综述了室内场景语义映射的方法。开始,我们回答了这个问题,什么是语义地图的移动的机器人,它的定义。在此之后,我们回顾了关于语义映射的三个模块中的每一个的工作,即,空间映射、语义信息获取和地图表示。

2023-10-18 22:34:20 386 1

原创 usb相机转为ip网络相机(ubuntu)

如果你希望在启动系统时自动启动这个流,可以将这个命令添加到你的 rc.local 文件或者创建一个新的 systemd 服务。这将返回诸如 /dev/video0,/dev/video1 等设备路径。通常,/dev/video0 是你的主要摄像头。这将启动一个CVLC会话,将USB摄像头的视频流转码为MJPG格式,并在端口8080上提供一个HTTP流。注意:你需要确保端口8080在你的防火墙中打开,并且你的网络设置允许其他设备访问这个端口。这将在浏览器中显示你的网络摄像头的视频流。这里以我个人ip为例。

2023-07-17 22:21:19 2250 2

原创 pytorch[10]

下面流程图和代码不一致 relu层和pooling层位置不一样。3*w*h 变为1* w’ * h“卷积运算 一个卷集核 最后只有 一个输出通道。卷积完成后 c w h 都可能变化。卷积核组合m x n x w x h。多个卷积核,分别输出,再cat拼接。m个卷积核 m个输出通道。

2022-11-13 16:36:10 414

原创 pytorch[9]

此方法无法解决输出结果之间的抑制关系, 也就是说有可能两个输出概率相同。用此方法 最后一层不需要激活函数。代码 注意最后一层不激活。所以改用Softmax层。

2022-11-12 22:26:34 178

原创 pytorch[6]

torchvison 下载数据集 (下载地址,下载测试集还是训练集,是否从网上下载)二者比较,右侧多个F.sigmoid。逻辑回归 ——做分类任务。

2022-11-12 20:43:31 100

原创 pytorch[8]

用来帮助我们加载数据,比如说做shuffle(提高数据集的随机性),batch_size,能拿出Mini-Batch进行训练。它帮我们自动完成这些工作。5、inputs, labels = data中的inputs的shape是[32,8],labels 的shape是[32,1]。分别是为了加载数据集,获取数据索引,获取数据总量。4、len函数的返回值 除以 batch_size 的结果就是每一轮epoch中需要迭代的次数。1、DataSet 是抽象类,不能实例化对象,主要是用于构造我们的数据集。

2022-11-12 20:42:34 162

原创 pytorch[7]

这里是输入 8 维输出2维 再x矩阵转化为1维度标量。行数代表数据数,列数代表特征数。

2022-11-12 14:32:05 204

原创 pytorch[5]

此处b为标量 但由于广播机制 他会自动补成3x1矩阵 能够整体相加运算。3构造损失函数和优化器。

2022-11-12 09:41:35 209

原创 pytorch 刘二[4]

back propagation 源代码。

2022-11-11 20:46:01 110

原创 pytorch刘二【3】

梯度变化

2022-11-11 10:35:32 135

原创 slam14讲 双目图像生成点云并保存pcd点云 代码

本文是在slam14讲的ch5 双目生成点云的代码基础上增加了保存功能,代码写的一般,第一次上传代码,见谅。

2022-10-17 20:36:23 1485 1

原创 Deep Learning for Image and Point Cloud Fusionin Autonomous Driving: A Review

摘要在过去几年中,自动驾驶汽车经历了快速发展。然而,由于驾驶环境的复杂性和动态性,实现完全自主并非易事。因此,自动驾驶车辆配备了一套不同的传感器,以确保可靠、准确的环境感知。特别是,相机激光雷达融合正在成为一个新兴的研究主题。然而,到目前为止,还没有关于基于深度学习的相机激光雷达融合方法的评论。为了弥合这一差距并激励未来的研究,本文致力于回顾最近利用图像和点云的基于深度学习的数据融合方法。本文简要概述了图像和点云数据处理的深度学习。随后,深入回顾了摄像机LiDAR融合方法在深度完成、目标检测、语义分割、跟踪

2022-09-25 14:42:42 1438

原创 Semantic Visual Simultaneous Localization andMapping: A Survey 语义视觉同步定位与映射研究综述 粗翻

摘要视觉同步定位与映射(vSLAM)在计算机视觉和机器人领域取得了巨大进展,并已成功应用于自主机器人导航和AR\/VR等许多领域。然而,vSLAM无法在动态和复杂的环境中实现良好的本地化。近年来,许多出版物报道,通过将语义信息与vSLAM相结合,语义vSLAM系统具有解决上述问题的能力。然而,还没有关于语义vSLAM的全面调查。为了填补这一空白,本文首先回顾了语义vSLAM的发展,明确强调了它的优势和差异。其次,我们探讨了语义vSLAM的三个主要问题:语义信息的提取和关联,语义信息的应用,以及语义vSLOM

2022-09-22 11:23:43 791

原创 无线室内定位系统和技术在地下采矿中的应用综述2021Applications of Wireless Indoor Positioning Systems and Technologies in U

过去十年,室内定位(或定位)领域出现了新的发展。由于全球导航卫星系统(GNSS)不能用于地下矿山,因此需要其他技术进行定位。今天的定位和通信选项主要包括Wi-Fi、蓝牙低能量(BLE)、超宽带(UWB)、射频识别设备(RFID)等。智能手机和平板电脑目前有一系列传感器和无线电,可以提供有价值的信息,通过各种方法实现室内定位。如果矿工可以随身携带智能手机,他们可以非常有效地实现定位和导航。这些技术最近在地下矿山中的应用已得到彻底审查和审查,以确定其在没有其他手段的情况下用于精确定位的可能性。已经确定了未来研究

2022-09-07 11:58:27 3081

原创 实时单目物体SLAM Real-time Monocular Object SLAM

2015摘要:我们提出了一个基于对象的实时SLAM系统,该系统利用了迄今为止最大的对象数据库。我们的方法包括两个主要部分:1)利用对象刚性约束改进地图并找到其真实比例的单目SLAM算法,以及2)基于二进制词包的新型对象识别算法,该算法为500个3D对象的数据库提供实时检测。这两个部分共同工作并相互受益:SLAM算法从对象的观察中积累信息,将对象特征锚定到特定地图地标,并对优化设置约束。同时,将部分或完全位于地图内的对象用作先验来指导识别算法,实现更高的召回率。我们在五个真实环境中评估了我们的建议,显示了相对

2022-09-05 11:29:32 919

原创 深度学习在slam的应用Deep Learning Applications in SLAM

摘要同时定位与映射(SLAM)是近年来智能机器人领域的研究热点。其处理对象是视觉图像。深度学习在计算机视觉领域取得了巨大成功,这使得深度学习与slam技术的结合成为一个可行的方案。本文总结了深度学习在SLAM技术中的一些应用,并介绍了其最新研究成果。比较了基于深度学习的SLAM技术与传统SLAM技术的优缺点。最后,展望了SLAM+深度学习技术的未来发展方向。1.介绍SLAM是一个过程,其中机器人配备了视觉、激光、里程表和其他传感器,在未知环境中构建地图时实现自我定位。它在机器人自主导航任务中起着关键作用[1

2022-09-05 08:31:41 3009

原创 视觉slam从几何到深度学习:挑战与机遇<Ongoing Evolution of Visual SLAM from Geometry to Deep Learning: Challenge>

2018年摘要视觉同时定位和映射(SLAM)在机器人界已经研究了几十年。随着基于几何模型的技术日益成熟和精确,视觉SLAM已经取得了重大进展和成就。然而,在具有挑战性的环境下,它们往往是脆弱的。最近,有一种趋势是开发数据驱动的方法,例如深度学习,以解决具有更稳健性能的视觉SLAM问题。本文旨在通过提供全面的技术回顾,见证视觉SLAM技术从基于几何模型到数据驱动方法的不断发展。我们的贡献不仅是汇编了最先进的端到端深度学习SLAM工作,还深入了解了深度学习SLAM的潜在机制。为此,我们首先简要概述了基于几何模型

2022-09-04 21:59:51 1290

翻译 论文粗翻 《视觉SLAM综述:从传统到语义》(An Overview on Visual SLAM: From Tradition to Semantic)

视觉SLAM(VSLAM)由于其传感器成本低、易于与其他传感器融合、环境信息更丰富等优势而得到迅速发展。传统的基于视觉的 SLAM 研究取得了许多成就,但在具有挑战性的环境中可能无法取得预期的结果。深度学习推动了计算机视觉的发展,深度学习与SLAM的结合越来越受到关注。语义信息作为高级环境信息,可以使机器人更好地了解周围环境。本文从传统VSLAM和语义VSLAM结合深度学习两个方面介绍了VSLAM技术的发展。对于传统的VSLAM,我们详细总结了间接和直接方法的优缺点,并给出了一些经典的VSLAM开源算法。

2022-09-04 09:26:19 1449

原创 ubuntu18.04 anaconda虚拟环境安装tensorflow-gpu1.15

安装显卡驱动安装anaconda创建虚拟环境conda create -n tensorflow-gpu1.15 python=3.7激活环境source activate tensorflow-gpu1.15安装cuda 和 cudnnconda install cudatoolkit=10.0 cudnn=7.6.0安装tensorflow-gpu1.15pip install --default-time=300 tensorflow-gpu==1.15

2022-05-21 11:12:48 442

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除