题意:话说一个公司的一些然要去参加一个party,每个人有一个愉悦值,而如果某个人的直接上司在场的话会非常扫兴,所以避免这样的安排,问给出n个人,每个人的愉悦值以及他们的上司所属关系,问你让那些人去可以让总的愉悦值最大,并求出这个值。
分析:树形dp入门题目,这个公司的人事关系可以根据给出的数据得到一个树,最上面的是最高层,往下依次,我们要做的就是在树的节点处进行dp。
用dp【i】【0】表示当前i这个人不选,dp【i】【1】表示当前i这个人安排去参加。
那么dp【st】【1】+=dp【i】【0】 ///因为当前这个要选,那么他的前一个一定不能选,否则不满足题目要求
而 dp【st】【0】+=max(dp【i】【0】,dp【i】【1】) 而在树中 st 是 i 的父节点。
实现的话很简单,就是直接找到根节点,建树的过程中dp,最后得到结果
#include<iostream>
#include<cmath>
#include<algorithm>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
using namespace std;
#define maxn 6005
int n;
int dp[maxn][2],father[maxn];//dp[i][0]0表示不去,dp[i][1]1表示去了
bool visited[maxn];
void tree_dp(int node)
{
int i;
visited[node] = 1;
for(i=1; i<=n; i++)
{
if(!visited[i]&&father[i] == node)//i为下属
{
tree_dp(i);//递归调用孩子结点,从叶子结点开始dp
//关键
dp[node][1] += dp[i][0];//上司来,下属不来
dp[node][0] +=max(dp[i][1],dp[i][0]);//上司不来,下属来、不来
}
}
}
int main()
{
int i;
int f,c,root;
while(scanf("%d",&n)!=EOF)
{
memset(dp,0,sizeof(dp));
memset(father,0,sizeof(father));
memset(visited,0,sizeof(visited));
for(i=1; i<=n; i++)
{
scanf("%d",&dp[i][1]);
}
root = 0;//记录父结点
bool beg = 1;
while (scanf("%d %d",&c,&f),c||f)
{
father[c] = f;
if( root == c || beg )
{
root = f;
}
}
while(father[root])//查找父结点
root=father[root];
tree_dp(root);
int imax=max(dp[root][0],dp[root][1]);
printf("%d\n",imax);
}
return 0;
}