2015年8月暑假ACM集训

学习内容(每日更新)

8.4-8.5

1.鸽巢定理及其推论

m只鸽子放进n个巢,至少有一个巢至少有m/n只(取上整)


2.容斥原理

奇加偶减

8.6

3.扩展欧几里德定理

如果ax+by=gcd(a,b)=d.则一定有整数解

#include<iostream>
#include<stdio.h>
#include<math.h>
using namespace std;
typedef long long ll;
 int exgcd(ll a,ll b,ll &x,ll &y)
{
    if(a==0)
    {
        x=0;y=1;
        return b;
    }
    else
    {
        ll tx,ty;
        ll d=exgcd(b%a,a,tx,ty);
        x=ty-(b/a)*tx;
        y=tx;
        return d;
    }
}
int main()
{
   ll a=3;
   ll b=8; 
   ll x,y;
   cout<<exgcd(a,b,x,y)<<endl;
   cout<<x<<" "<<y<<endl;
	return 0;
}




4.欧拉函数

f(n)表示不超过n与n互质的数的个数


#include<stdio.h>
#include<iostream>
#include<stdio.h>
#include<math.h>
using namespace std;
int eular(int n)
{
int ret=1,i;
for(i=2;i*i<=n;i++)
{
if(n%i==0)
{
n/=i,ret*=i-1;
while(n%i==0)
n/=i,ret*=i;
}
}
if(n>1)
ret*=n-1;
return ret;
}
int main()
{
	cout<<eular(1)<<endl;
}


若n为质数,则到从1到n与n互质的数有n-1个


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值