判断二叉树是否为平衡的二叉树

  • 二叉搜索树判断是否平衡有两种方法
  1. 自顶向下, 比较容易,由上到下遍历每个元素,判断左子树和右子树的高度, 大于1就不平衡, 多次判断节点高度, 复杂度为O(n²)
  2. 自下向上, 其实就是后续遍历判断树的高度, 其中-1代表不平衡, 那么代码的主要逻辑就是

左子树不平衡 或者 右子树不平衡 或者 左子树和右子树高度大于1(也就是自己不平衡), 那么返回-1 . 否则返回树的高度即可


package com.zzk.data;

/**
 * @author zzk
 * @Title: CheckAVL
 * @Description:    判断 "二叉搜索树" 是否平衡
 * @date 2021-11-15 10:41
 */
public class CheckAVL<T extends Comparable> {

    CheckAVL.Node root;

    public CheckAVL() {
        this.root = null;
    }

    static class Node<T extends Comparable> {

        public T key;
        public CheckAVL.Node<T> left;
        public CheckAVL.Node<T> right;
        public CheckAVL.Node<T> parent;

        public Node(T key, CheckAVL.Node left, CheckAVL.Node right, CheckAVL.Node parent) {
            this.key = key;
            this.left = left;
            this.right = right;
            this.parent = parent;
        }

        @Override
        public String toString() {
            return "Node{" +
                    "key=" + key +
                    '}';
        }
    }

    /**
     * 插入到树中
     */
    public void insert(T key) {
        if (null == root) {
            root = new CheckAVL.Node(key, null, null, null);
        } else {
            insert(root, key);
        }
    }

    private void insert(CheckAVL.Node node, T key) {
        CheckAVL.Node<T> targetNode = new CheckAVL.Node<>(key, null, null, node);
        if (key.compareTo(node.key) < 0) {
            if (null == node.left) {
                node.left = targetNode;
            } else {
                insert(node.left, key);
            }
        } else {
            if (null == node.right) {
                node.right = targetNode;
            } else {
                insert(node.right, key);
            }
        }
    }
    
    public boolean isBalance(){
        return height(root) >= 0;
    }

    private int height(CheckAVL.Node node){
        if (null == node) {
            return 0;
        }
        int leftHeight = height(node.left);
        int rightHeight = height(node.right);

        //左树不平衡 或者 右树不平衡, 或者高度大于1 导致的不平衡
        if (leftHeight == -1 || rightHeight == -1 || Math.abs(leftHeight - rightHeight) > 1) {
            return -1;
        }else{
            return Math.max(leftHeight,rightHeight) + 1;
        }
    }


    public static void main(String[] args) {

        int[] intArr1 = {3,9,20,15,7};
        int[] intArr2 = {1,2,2,3,3,4,4};

        CheckAVL<Integer> integerCheckAVL1 = new CheckAVL<>();
        CheckAVL<Integer> integerCheckAVL2 = new CheckAVL<>();

        for (int i : intArr1) {
            integerCheckAVL1.insert(i);
        }
        for (int i : intArr2) {
            integerCheckAVL2.insert(i);
        }

        System.out.println(integerCheckAVL1.isBalance());
        System.out.println(integerCheckAVL2.isBalance());


    }
}

平衡二叉树(Balanced Binary Tree),又被称为AVL树,是一种特殊的二叉搜索树。在AVL树中任何节点的两个子树的高度最大差别为1,这样的二叉树就称为平衡二叉树平衡二叉树的查找操作的效率与普通二叉搜索树相同,但插入和删除操作则需要通过旋转来保持树的平衡。 以下是一个判断二叉树是否平衡二叉树的Python代码示例: ```python class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None def isBalanced(root): """ :type root: TreeNode :rtype: bool """ def checkHeight(node): # 如果节点为空,返回高度为0 if not node: return 0 # 递归计算左右子树的高度 left_height = checkHeight(node.left) if left_height == -1: return -1 right_height = checkHeight(node.right) if right_height == -1: return -1 # 如果左右子树高度差大于1,则不是平衡树 if abs(left_height - right_height) > 1: return -1 # 返回当前节点的高度 return max(left_height, right_height) + 1 # 从根节点开始检查,如果高度为-1,说明不是平衡树 return checkHeight(root) != -1 # 构建一棵树用于测试 root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(2) root.left.left = TreeNode(3) root.left.right = TreeNode(3) root.right.left = TreeNode(4) root.right.right = TreeNode(4) # 判断是否平衡二叉树 print(isBalanced(root)) # 应该输出 False,因为存在两个节点的子树高度差为2 ``` 这段代码中,`isBalanced` 函数用于判断一个二叉树是否平衡二叉树。它通过辅助函数`checkHeight`来递归地计算每个节点的高度,如果在计算过程中发现任何节点的左右子树高度差超过1,则该树不是平衡的,并立即返回-1作为高度。如果所有节点的左右子树高度差都不超过1,则返回该节点的高度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值