广告计算学 刘鹏 听课笔记

本文为刘鹏教授关于广告计算的听课笔记重点,主要聚焦于4.1章节的位置拍卖理论,深入探讨了在线广告市场的竞价策略和优化方法。
摘要由CSDN通过智能技术生成
1.1 广告的目的
三个主体:advertiser medium audience
广告是 非人员的、低成本的用户接触 (reach)
品牌(brank)广告 vs 效果(direct)广告:离线转化率 vs 即时转化
1.2 广告有效性模型
三个阶段
选择:曝光-广告位属性;关注-减少干扰、推荐解释、符合需求;
解释:理解-用户能看懂;信息接受-认同(广告位不能只看流量,要高大上);
态度:保持-艺术性带来的记忆效果;购买-价格可接受(价格敏感vs不敏感);
广告创意
传统广告:幽默(+关注,-理解)、性感(+关注、-认同)、艺术(+保持,-理解)、折扣(+关注,+购买)
在线广告:仿背景、大标识、简单
1.3 广告与销售的区别
从偏广告到偏销售
硬广(banner)
SEM(搜索广告)
导航网站
淘宝直通车
返利网(跟广告主签销售协议:CPS)
只看ROI(return on investment)没意义:接近supply(媒体)的渠道(关注潜在用户),ROI低,但对广告主越有价值;接近demand(广告主)的渠道(短期交易)相反
1.4 在线广告的特点
对比
在线广告:技术和产品驱动(精准定向、计算是核心问题、效果可衡量)
离线广告:创业和客户关系驱动
关键点和行业协会
展示广告的标准化:iab
代理商的角色和代理费:4A
广告主的利益:ANA
1.5 在线广告市场
media->ad network;ad exchange; SSP(Supply Side Platform)->DSP;agency;advertiser
各方是博弈关系;有数据的一方占优势
1.6 核心问题和挑战
Max ROI(users;contexts;ads)
特征提取;ctr预测;竞价市场机制;受限优化(量与质:保证受众规模);reinforcement learning(强化学习:explore&exploit);推荐技术
实时索引;nosql存储;离线计算(hadoop);在线学习(流计算);实时竞价
large scale;动态性(用户兴趣);丰富的查询信息(context+user)
1.7 搜索、广告、推荐的比较
搜索 广告 推荐
首要任务 相关性 ROI 用户兴趣
其它需求 垂直领域相互独立 质量;安全性 多样性;新鲜度
索引规模 十亿级 百万级 亿级
个性化 展示和效果ad不同

推荐领域的downstream:把这一次点击跟后续的行为结合起来优化

1.8 投资回报(ROI)分析

eCPM=CTR(a,u,c)*value(a,u)

市场形态
CPM市场:固定eCPM
CPC市场:动态CTR,固定click value
CPS、CPA市场:动态CTR,动态click value
1.9 在线广告系统结构
高并发投送系统
受众定向系统
流式计算平台(日志收集、反馈、反作弊、计价)
信息高速公路(内部、外部数据收集处理)
模块:
ad serving; ad retrieval; ad ranking; billing; anti-spam;session log generation;data warehouse;customized audience segmentation; audience targeting; ad management

2.1 常用广告开源工具
Hadoop: HDFS, MapReduce
ZooKeeper(Yahoo)
Hive(Facebook)
Hbase
Storm(Twitter)
Mahout
Spark
Thrift(Facebook), ProtoBuf(Google)
Scribe(Facebook), Flume: 日志收集工具

2.2 合约广告

Guaranteed Delivery
CTR预测
流量预测(forecasting)
受众定向(audience targeting)
Ad server
Ad retrieval;
Ad ranking; 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值