动态规划

题目

设有一个长度为L的钢条,在钢条上标有n个位置点(p1,p2,…,pn)。现在需要按钢条上标注的位置将钢条切割为n+1段,假定每次切割所需要的代价与所切割的钢条长度成正比。请编写一个算法,能够确定一个切割方案,使切割的总代价最小。

题解

 * DP
 */
#include<bits/stdc++.h>

using namespace std;

int min (int a, int b) {
    return a < b ? a : b;;
}

/**
 * j-i=1 ==> a[i][j]=0;
 * j-i=2 ==> a[i][j]=p[j]-p[i];
 * 3<=j-i ==> a[i][j]=min{p[j]-p[i]+a[i][k]+a[k][j]}; i+1<=k<=j-1
 */

int solve (int begin, int end, int *p, int **dp) {
    if (end - begin == 1)
        return 0;
    else if (end - begin == 2)
        return p[end] - p[begin];
    else {
        int least = dp[begin][begin + 1] + dp[begin + 1][end] + p[end] - p[begin];
        for (int i = 2; i < end - begin; i++) {
            least = min (least, dp[begin][begin + i] + dp[begin + i][end] + p[end] - p[begin]);
        }
        return least;
    }
}

int main() {
	cout << "Please input the length of steal bar:";
    int L, n;
    cin >> L;
    cout << "Please input n:";
    cin >> n;
    int *p;
    p = new int[n + 2];
    p[0] = 0;
    cout << "Please input the cut points:";
    for (int i = 1; i < n + 1; i++) {
        cin >> p[i];
    }
    sort (p + 1, p + n + 1);
    p[n + 1] = L;
    int **dp = new int*[n + 2];
    for (int i = 0; i < n + 2; i++) {
        dp[i] = new int[n + 2];
    }
    for (int i = 1; i < n + 2; i++) {
        for (int j = 0; j < n + 2 - i; j++) {
            dp[j][i + j] = solve (j, i + j, p, dp);
        }
    }
    cout << solve (0, n + 1, p, dp);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值