GuavaCache高级实战之并发操作
并发设置
GuavaCache通过设置 concurrencyLevel 使得缓存支持并发的写入和读
LoadingCache<String,Object> cache = CacheBuilder.newBuilder()
// 最大3个 同时支持CPU核数线程写缓存
.maximumSize(3).concurrencyLevel(Runtime.getRuntime().availableProcessors()).bui
ld();
concurrencyLevel=Segment数组的长度
同ConcurrentHashMap类似Guava cache的并发也是通过分离锁实现
V get(K key, CacheLoader<? super K, V> loader) throws ExecutionException {
int hash = this.hash(Preconditions.checkNotNull(key));
//通过hash值确定该key位于哪一个segment上,并获取该segment
return this.segmentFor(hash).get(key, hash, loader);
}
LoadingCache采用了类似ConcurrentHashMap的方式,将映射表分为多个segment。segment之间
可以并发访问,这样可以大大提高并发的效率,使得并发冲突的可能性降低了。
更新锁定
GuavaCache提供了一个refreshAfterWrite定时刷新数据的配置项
如果经过一定时间没有更新或覆盖,则会在下一次获取该值的时候,会在后台异步去刷新缓存
刷新时只有一个请求回源取数据,其他请求会阻塞(block)在一个固定时间段,如果在该时间段内没
有获得新值则返回旧值。
LoadingCache<String,Object> cache = CacheBuilder.newBuilder()
// 最大3个 同时支持CPU核数线程写缓存
.maximumSize(3).concurrencyLevel(Runtime.getRuntime().availableProcessors()).
//3秒内阻塞会返回旧数据
refreshAfterWrite(3,TimeUnit.SECONDS).build();
GuavaCache高级实战之动态加载
动态加载行为发生在获取不到数据或者是数据已经过期的时间点,Guava动态加载使用回调模式
用户自定义加载方式,然后Guava cache在需要加载新数据时会回调用户的自定义加载方式
segmentFor(hash).get(key, hash, loader)
loader即为用户自定义的数据加载方式,当某一线程get不到数据会去回调该自定义加载方式去加载数
据
GuavaCache高级实战之自定义LRU算法
public class LinkedHashLRUcache<k, v> {
/**
* LinkedHashMap(自身实现了LRU算法)
* 有序
* 每次访问一个元素,都会加到尾部
*/
int limit;
LRUcache<k, v> internalLRUcache;
public LinkedHashLRUcache(int limit) {
this.limit = limit;
this.internalLRUcache = new LRUcache(limit);
}
public void put(k key, v value) {
this.internalLRUcache.put(key, value);
}
public v get(k key) {
return this.internalLRUcache.get(key);
}
public static void main(String[] args) {
LinkedHashLRUcache lru=new LinkedHashLRUcache(3);
lru.put(1,"zhangfei1");
lru.put(2,"zhangfei2");
lru.put(3,"zhangfei3");
lru.get(1);
lru.put(4,"zhangfei4");
for(Object o:lru.internalLRUcache.values()){
System.out.println(o.toString());
}
}
public class LRUcache<k, v> extends LinkedHashMap<k, v> {
private final int limit;
public LRUcache(int limit) {
//初始化 accessOrder : true 改变尾结点
super(16, 0.75f, true);
this.limit = limit;
}
//是否删除最老的数据
@Override
protected boolean removeEldestEntry(Map.Entry<k, v> eldest) {
return size() > limit;
}
}
GuavaCache高级实战之疑难问题
GuavaCache会oom(内存溢出)吗?
会,当我们设置缓存永不过期(或者很长),缓存的对象不限个数(或者很大)时,比如:
Cache<String, String> cache = CacheBuilder.newBuilder()
.expireAfterWrite(100000, TimeUnit.SECONDS)
.build();
不断向GuavaCache加入大字符串,最终将会oom
解决方案:缓存时间设置相对小些,使用弱引用方式存储对象
Cache<String, String> cache = CacheBuilder.newBuilder()
.expireAfterWrite(1, TimeUnit.SECONDS)
.weakValues().build();
GuavaCache缓存到期就会立即清除吗
不是的,GuavaCache是在每次进行缓存操作的时候,如get()或者put()的时候,判断缓存是否过期
void evictEntries(ReferenceEntry<K, V> e) {
drainRecencyQueue();
while ((e = writeQueue.peek()) != null && map.isExpired(e, now)) {
if (!removeEntry(e, e.getHash(), RemovalCause.EXPIRED)) {
throw new AssertionError();
}
}
while ((e = accessQueue.peek()) != null && map.isExpired(e, now)) {
if (!removeEntry(e, e.getHash(), RemovalCause.EXPIRED)) {
throw new AssertionError();
}
}
}
一个如果一个对象放入缓存以后,不在有任何缓存操作(包括对缓存其他key的操作),那么该缓存不
会主动过期的。
GuavaCache如何找出最久未使用的数据
用accessQueue,这个队列是按照LRU的顺序存放的缓存对象(ReferenceEntry)的。会把访问过的对
象放到队列的最后。
并且可以很方便的更新和删除链表中的节点,因为每次访问的时候都可能需要更新该链表,放入到链表
的尾部。
这样,每次从access中拿出的头节点就是最久未使用的。
对应的writeQueue用来保存最久未更新的缓存队列,实现方式和accessQueue一样。