插入排序的算法复杂度为O(n2),但如果序列为正序可提高到O(n),而且直接插入排序算法比较简单,希尔排序利用这两点得到了一种改进后的插入排序。
一. 算法描述
希尔排序:将无序数组分割为若干个子序列,子序列不是逐段分割的,而是相隔特定的增量的子序列,对各个子序列进行插入排序;然后再选择一个更小的增量,再将数组分割为多个子序列进行排序......最后选择增量为1,即使用直接插入排序,使最终数组成为有序。
增量的选择:在每趟的排序过程都有一个增量,至少满足一个规则 增量关系 d[1] > d[2] > d[3] >..> d[t] = 1 (t趟排序);根据增量序列的选取其时间复杂度也会有变化,这个不少论文进行了研究,在此处就不再深究;本文采用首选增量为n/2,以此递推,每次增量为原先的1/2,直到增量为1;
下图详细讲解了一次希尔排序的过程:
二. 算法分析
平均时间复杂度:希尔排序的时间复杂度和其增量序列有关系,这涉及到数学上尚未解决的难题;不过在某些序列中复杂度可以为O(n1.3);
空间复杂度:O(1)
稳定性:不稳定
三. 算法实现
/********************************************************
*函数名称:ShellInsert
*参数说明:pDataArray 无序数组;
* d 增量大小
* iDataNum为无序数据个数
*说明: 希尔按增量d的插入排序
*********************************************************/
void ShellInsert(int* pDataArray, int d, int iDataNum)
{
for (int i = d; i < iDataNum; i += 1) //从第2个数据开始插入
{
int j = i - d;
int temp = pDataArray[i]; //记录要插入的数据
while (j >= 0 && pDataArray[j] > temp) //从后向前,找到比其小的数的位置
{
pDataArray[j+d] = pDataArray[j]; //向后挪动
j -= d;
}
if (j != i - d) //存在比其小的数
pDataArray[j+d] = temp;
}
}
/********************************************************
*函数名称:ShellSort
*参数说明:pDataArray 无序数组;
* iDataNum为无序数据个数
*说明: 希尔排序
*********************************************************/
void ShellSort(int* pDataArray, int iDataNum)
{
int d = iDataNum / 2; //初始增量设为数组长度的一半
while(d >= 1)
{
ShellInsert(pDataArray, d, iDataNum);
d = d / 2; //每次增量变为上次的二分之一
}
}
总结:
由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。
不需要大量的辅助空间,和归并排序一样容易实现。希尔排序是基于插入排序的一种算法, 在此算法基础之上增加了一个新的特性,提高了效率。希尔排序的时间复杂度与增量序列的选取有关,例如希尔增量时间复杂度为O(n²),而Hibbard增量的希尔排序的时间复杂度为O(
),希尔排序时间复杂度的下界是n*log2n。希尔排序没有快速排序算法快 O(n(logn)),因此中等大小规模表现良好,对规模非常大的数据排序不是最优选择。但是比O(
)复杂度的算法快得多。并且希尔排序非常容易实现,算法代码短而简单。 此外,希尔算法在最坏的情况下和平均情况下执行效率相差不是很多,与此同时快速排序在最坏的情况下执行的效率会非常差。专家们提倡,几乎任何排序工作在开始时都可以用希尔排序,若在实际使用中证明它不够快,再改成快速排序这样更高级的排序算法. 本质上讲,希尔排序算法是直接插入排序算法的一种改进,减少了其复制的次数,速度要快很多。 原因是,当n值很大时数据项每一趟排序需要的个数很少,但数据项的距离很长。当n值减小时每一趟需要和动的数据增多,此时已经接近于它们排序后的最终位置。 正是这两种情况的结合才使希尔排序效率比插入排序高很多。Shell算法的性能与所选取的分组长度序列有很大关系。只对特定的待排序记录序列,可以准确地估算关键词的比较次数和对象移动次数。想要弄清关键词比较次数和记录移动次数与增量选择之间的关系,并给出完整的数学分析,至今仍然是数学难题
时间性能