从牛顿法到L-BFGS的算法演变

本文介绍了非线性优化中的牛顿法及其改进版,包括阻尼牛顿法、拟牛顿法、DFP算法、BFGS算法和L-BFGS算法。牛顿法因计算复杂性和对目标函数的严格要求而受限,拟牛顿法通过近似海森矩阵解决这些问题。BFGS算法成为常用方法,而L-BFGS通过限制存储降低了内存开销,适用于大数据环境。
摘要由CSDN通过智能技术生成

前言

(本文主要学习自该博主的文章:http://blog.csdn.net/itplus,以下是本人的笔记,主要记录了结论部分,省略了推导的部分。对具体推导过程有兴趣的同学请访问原博主的博客~)

  拟牛顿法是求解非线性优化问题最有效的方法之一,其中DFP方法,BFGS方法以及L-BFGS方法都是重要的拟牛顿法。我们现在考虑如下无约束的极小化问题:

minxf(x),x=(x1,x2,...,xN)TRN

  这里我们假定f为凸函数,且两阶连续可微,并且记该极小化问题的解为 x

牛顿法

  基本思想:在现有极小点估计值的附近对f(x)做二阶泰勒展开,进而找到极小点的下一个估计值。

  当特征向量长度N=1时,可以构造如下的迭代格式,使f(x)收敛到极小点:

xk+1=xkf(xk)f(xk),k=0,1,...

  当N>1的情况下,需要对二阶泰勒展开做推广。设 f 为f的梯度向量(记做 gk ), 2f 为f的海森矩阵(Hessian matrix,记做 Hk ),其定义分别为:
f=fx1fx2...fxN,2f=2fx212fx2x1...2fxNx12fx1x22fx22...2fxNx2............2fx1xN2fx2xN...2fx2NNN

  于是我们同样可以构造出迭代格式(需要 Hk 非奇异,即行列式不为0的方阵)
xk+1=xkH
  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值