HDU 4350 Card

九野的博客,转载请注明出处: http://blog.csdn.net/acmmmm/article/details/10120619

打表找规律,比赛应付了一下,其实还可以把内存再优化一半掉,下面的0都是手动填充的,可以优化掉

题意:

T个测试数据

下面52个数字表示 从栈顶到栈底的52个数

n l r表示 从栈顶下数 [l,r] 这个区间的数都放到栈顶

这样n次操作后的结果

这里可以猜想 n 操作应该是有重复的,也就是取模

n%MOD , MOD是个关于 l ,r 的表达式

省时间就直接打表了

 

#include<stdio.h>
int s1[53],s2[53],st2;
void outstack(int l,int r){
    st2=1;
    int i;
    for(i=l;i<=r;i++)
        s2[st2++]=s1[i];
    for(i=l;i+r-l+1<=52;i++)
        s1[i]=s1[i+r-l+1];

    st2=1;
    for(;i<=52;i++)
        s1[i]=s2[st2++];
}

int mod[52][52]={52,26,52,13,52,26,52,13,52,26,52,13,4,26,52,13,52,26,52,13,52,26,52,13,52,2,52,13,52,26,52,13,52,26,52,13,52,26,4,13,52,26,52,13,52,26,52,13,52,26,52,1,0,51,51,17,51,51,17,51,51,17,51,51,17,51,51,17,51,3,17,51,51,17,51,51,17,51,51,17,51,51,17,51,51,17,3,51,17,51,51,17,51,51,17,51,51,17,51,51,17,51,51,1,0,0,50,25,50,25,10,25,50,25,50,5,50,25,50,25,10,25,50,25,50,5,50,25,50,25,2,25,50,25,50,5,50,25,50,25,10,25,50,25,50,5,50,25,50,25,10,25,50,25,50,1,0,0,0,49,49,49,49,49,49,7,49,49,49,49,49,49,7,49,49,49,49,49,49,7,49,49,49,49,49,49,7,49,49,49,49,49,49,7,49,49,49,49,49,49,7,49,49,49,49,49,49,1,0,0,0,0,48,24,16,12,48,8,48,6,16,24,48,4,48,24,16,3,48,8,48,12,16,24,48,2,48,24,16,12,48,8,48,3,16,24,48,4,48,24,16,6,48,8,48,12,16,24,48,1,0,0,0,0,0,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,1,0,0,0,0,0,0,46,23,46,23,46,23,46,23,46,23,46,23,46,23,46,23,46,23,46,23,46,23,2,23,46,23,46,23,46,23,46,23,46,23,46,23,46,23,46,23,46,23,46,23,46,1,0,0,0,0,0,0,0,45,45,15,45,9,15,45,45,5,9,45,15,45,45,3,45,45,5,45,9,15,45,45,15,9,45,5,45,45,3,45,45,15,45,9,5,45,45,15,9,45,15,45,45,1,0,0,0,0,0,0,0,0,44,22,44,11,44,22,44,11,44,22,4,11,44,22,44,11,44,22,44,11,44,2,44,11,44,22,44,11,44,22,44,11,4,22,44,11,44,22,44,11,44,22,44,1,0,0,0,0,0,0,0,0,0,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,1,0,0,0,0,0,0,0,0,0,0,42,21,14,21,42,7,6,21,14,21,42,7,42,3,14,21,42,7,42,21,2,21,42,7,42,21,14,3,42,7,42,21,14,21,6,7,42,21,14,21,42,1,0,0,0,0,0,0,0,0,0,0,0,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41,1,0,0,0,0,0,0,0,0,0,0,0,0,40,20,40,10,8,20,40,5,40,4,40,10,40,20,8,5,40,20,40,2,40,20,40,5,8,20,40,10,40,4,40,5,40,20,8,10,40,20,40,1,0,0,0,0,0,0,0,0,0,0,0,0,0,39,39,13,39,39,13,39,39,13,39,39,13,3,39,13,39,39,13,39,39,13,39,39,13,39,3,13,39,39,13,39,39,13,39,39,13,39,39,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,38,19,38,19,38,19,38,19,38,19,38,19,38,19,38,19,38,19,2,19,38,19,38,19,38,19,38,19,38,19,38,19,38,19,38,19,38,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,36,18,12,9,36,6,36,9,4,18,36,3,36,18,12,9,36,2,36,9,12,18,36,3,36,18,4,9,36,6,36,9,12,18,36,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,35,35,35,35,7,35,5,35,35,7,35,35,35,5,7,35,35,35,35,7,5,35,35,35,7,35,35,5,35,7,35,35,35,35,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,34,17,34,17,34,17,34,17,34,17,34,17,34,17,34,17,2,17,34,17,34,17,34,17,34,17,34,17,34,17,34,17,34,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,33,33,11,33,33,11,33,33,11,33,3,11,33,33,11,33,33,11,33,33,11,3,33,11,33,33,11,33,33,11,33,33,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,16,32,8,32,16,32,4,32,16,32,8,32,16,32,2,32,16,32,8,32,16,32,4,32,16,32,8,32,16,32,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,30,15,10,15,6,5,30,15,10,3,30,5,30,15,2,15,30,5,30,3,10,15,30,5,6,15,10,15,30,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,28,14,28,7,28,14,4,7,28,14,28,7,28,2,28,7,28,14,28,7,4,14,28,7,28,14,28,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,27,9,27,27,9,27,27,3,27,27,9,27,27,9,27,27,3,27,27,9,27,27,9,27,27,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,26,13,26,13,26,13,26,13,26,13,26,13,2,13,26,13,26,13,26,13,26,13,26,13,26,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,25,25,25,25,5,25,25,25,25,5,25,25,25,25,5,25,25,25,25,5,25,25,25,25,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,12,8,6,24,4,24,3,8,12,24,2,24,12,8,3,24,4,24,6,8,12,24,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,22,11,22,11,22,11,22,11,22,11,2,11,22,11,22,11,22,11,22,11,22,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,21,21,7,21,21,7,3,21,7,21,21,7,21,3,7,21,21,7,21,21,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,10,20,5,4,10,20,5,20,2,20,5,20,10,4,5,20,10,20,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,9,6,9,18,3,18,9,2,9,18,3,18,9,6,9,18,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,8,16,4,16,8,16,2,16,8,16,4,16,8,16,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,15,5,15,3,5,15,15,5,3,15,5,15,15,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,7,14,7,14,7,2,7,14,7,14,7,14,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,13,13,13,13,13,13,13,13,13,13,13,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,6,4,3,12,2,12,3,4,6,12,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,11,11,11,11,11,11,11,11,11,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,5,10,5,2,5,10,5,10,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,9,3,9,9,3,9,9,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,4,8,2,8,4,8,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,7,7,7,7,7,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,3,2,3,6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,5,5,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,2,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
int main(){
    int i,n,T,Cas=1,l,r;scanf("%d",&T);
    while(T--)
    {
        for(i=52;i>=1;i--)scanf("%d",&s1[i]);
        scanf("%d%d%d",&n,&l,&r);
        n%=mod[52-r][52-l];

        while(n--)    outstack(53-r,53-l);
        printf("Case #%d: ",Cas++);
        for(i=52;i>1;i--)printf("%d ",s1[i]);
        printf("%d\n",s1[i]);
    }
    return 0;
}

#include<stdio.h>
#define N 53

int s1[N],s2[N],st2;
void outstack(int l,int r){
    st2=1;
    int i;
    for(i=l;i<=r;i++)
        s2[st2++]=s1[i];
    for(i=l;i+r-l+1<=52;i++)
        s1[i]=s1[i+r-l+1];
    st2=1;
    for(;i<=52;i++)
        s1[i]=s2[st2++];
}
bool Is(){
    for(int i=1;i<=52;i++)if(i!=s1[i])return false;
    return true;
}
int main(){
    FILE *fp;
    fp=fopen("HDU 4350","w");
    for(int i=1;i<=52;i++)s1[i]=i;
    for(int i=1;i<=52;i++)
        for(int j=1;j<=52;j++)
			if(i>j)fprintf(fp,"0,");
			else
            for(int k=1;;k++)
            {
                outstack(i,j);
                if(Is())
                {
                    fprintf(fp,"%d,",k);
                    break;
                }
            }
    fclose(fp);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值