题目链接:点击打开链接
题意:
给定n盏灯和m个关联,
下面m个关联 u v 表示点亮u就会点亮v
问最少需要手动点亮几盏灯
思路:
缩点一下求入度为0的点数。。
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
#define N 20000
//N为最大点数
#define M 150000
//M为最大边数
int n, m;//n m 为点数和边数
struct Edge{
int from, to, nex;
bool sign;//是否为桥
}edge[M<<1];
int head[N], edgenum;
void add(int u, int v){//边的起点和终点
Edge E={u, v, head[u], false};
edge[edgenum] = E;
head[u] = edgenum++;
}
int DFN[N], Low[N], Stack[N], top, Time; //Low[u]是点集{u点及以u点为根的子树} 中(所有反向弧)能指向的(离根最近的祖先v) 的DFN[v]值(即v点时间戳)
int taj;//连通分支标号,从1开始
int Belong[N];//Belong[i] 表示i点属于的连通分支
bool Instack[N];
vector<int> bcc[N]; //标号从1开始
void tarjan(int u ,int fa){
DFN[u] = Low[u] = ++ Time ;
Stack[top ++ ] = u ;
Instack[u] = 1 ;
for (int i = head[u] ; ~i ; i = edge[i].nex ){
int v = edge[i].to ;
if(DFN[v] == -1)
{
tarjan(v , u) ;
Low[u] = min(Low[u] ,Low[v]) ;
if(DFN[u] < Low[v])
{
edge[i].sign = 1;//为割桥
}
}
else if(Instack[v]) Low[u] = min(Low[u] ,DFN[v]) ;
}
if(Low[u] == DFN[u]){
int now;
taj ++ ; bcc[taj].clear();
do{
now = Stack[-- top] ;
Instack[now] = 0 ;
Belong [now] = taj ;
bcc[taj].push_back(now);
}while(now != u) ;
}
}
void tarjan_init(int all){
memset(DFN, -1, sizeof(DFN));
memset(Instack, 0, sizeof(Instack));
top = Time = taj = 0;
for(int i=1;i<=all;i++)if(DFN[i]==-1 )tarjan(i, i); //注意开始点标!!!
}
vector<int>G[N];
int du[N];
void suodian(){
memset(du, 0, sizeof(du));
for(int i = 1; i <= taj; i++)G[i].clear();
for(int i = 0; i < edgenum; i++){
int u = Belong[edge[i].from], v = Belong[edge[i].to];
if(u!=v)G[u].push_back(v), du[v]++;
}
}
void init(){memset(head, -1, sizeof(head)); edgenum=0;}
int main(){
int i, j, u, v, T, Cas = 1;scanf("%d",&T);
while(T--)
{
scanf("%d %d",&n,&m);
init();
while(m--)
{
scanf("%d %d",&u,&v);
add(u,v);
}
tarjan_init(n);
suodian();
int ans = 0;
for(i = 1; i <= taj; i++) if(du[i]==0)ans++;
printf("Case %d: %d\n", Cas++, ans);
}
return 0;
}
/*
99
2 0
2 1
2 1
2 2
1 2
2 1
*/