含参变量积分基础知识(1) —— 正常积分的性质

含参量积分基础知识(1) 正常积分部分

试试回答下述问题?
1.什么是含参量积分?
2.什么时候求极限和积分的顺序可以交换?为什么呢?
3.什么时候求导与积分的顺序可以交换?为什么呢?
4.什么时候关于x的积分和关于y的积分可以交换?为什么呢?

1.什么是含参量积分? [ 1 ] [1] [1]

  • 对于一个定积分 I = ∫ c d y d y I=\int_c^d y dy I=cdydy,往其中加入一个参数 a a a,变成 I ( a ) = ∫ c d a y d y I(a)=\int_c^d ay dy I(a)=cdaydy, 其中 a ∈ [ a 1 , a 2 ] a\in[a_1,a_2] a[a1,a2]。这使得每确定一个参数 a a a,就会有一个 I ( a ) I(a) I(a)而随之确定,就称其为定义在 [ a 1 , a 2 ] [a_1, a_2] [a1,a2]上的含参量 a a a的正常积分(简称含参量积分)
  • 把上面的参数 a a a换成 x x x,把 I I I换成 I ( a ) I(a) I(a),就得到比较常用的表示方式 φ ( x ) = ∫ c d f ( x , y ) , x ∈ [ a 1 , a 2 ] \varphi(x)=\int_c^d f(x,y), x\in [a_1,a_2] φ(x)=cdf(x,y),x[a1,a2]
  • 更一般的,除了被积函数可以加上参数之外,积分区域也可以加上参数,就像 ∫ a 2 a a x d x \int_a^{2a} ax dx a2aaxdx一样,仍然可以实现每确定一个参数,就有一个积分值随之确定(类似于由参数确定的函数)。这种积分上下限也带有参数的一般形式为 φ ( x ) = ∫ c ( x ) d ( x ) f ( x , y ) d y , x ∈ [ a 1 , a 2 ] \varphi(x)=\int_{c(x)}^{d(x)} f(x,y) dy, x\in[a_1,a_2] φ(x)=c(x)d(x)f(x,y)dy,x[a1,a2]

2.连续性(极限和积分顺序可交换)

2.1 什么条件下成立 lim ⁡ x → x 0 ∫ c d f ( x , y ) d y = ∫ c d lim ⁡ x → x 0 f ( x , y ) d y \lim\limits_{x\to x_0} \int_{c}^{d}f(x,y) dy=\int_{c}^{d} \lim\limits_{x\to x_0}f(x,y)dy xx0limcdf(x,y)dy=cdxx0limf(x,y)dy

f f f连续时

2.1.1 简述理由

问题的本质是:如何证明一个极限等于一个值?

答:使用极限定义,通过减法将问题转化为 f f f的一致连续问题

2.2 什么条件下成立 lim ⁡ x → x 0 ∫ c ( x ) d ( x ) f ( x , y ) d y = ∫ c ( x 0 ) d ( x 0 ) lim ⁡ x → x 0 f ( x , y ) d y \lim\limits_{x\to x_0} \int_{c(x)}^{d(x)}f(x,y) dy=\int_{c(x_0)}^{d(x_0)} \lim\limits_{x\to x_0}f(x,y)dy xx0limc(x)d(x)f(x,y)dy=c(x0)d(x0)xx0limf(x,y)dy

f ( x ) f(x) f(x) c ( x ) , d ( x ) c(x),d(x) c(x),d(x)都连续时

2.2.1 简述理由

问题转化为:如何将上下限的函数,转化为常数的形式?这样就可以用2.1的结论了

答:用换元 y = c ( x ) + t ( d ( x ) − c ( x ) ) y=c(x)+t(d(x)-c(x)) y=c(x)+t(d(x)c(x))换掉将积分的上下限变为从 0 到 1(即第一种情况)自然得证。

3.可微性('求导’与’积分’顺序可交换)

3.1 什么条件下成立 d d x ∫ c d f ( x , y ) d y = ∫ c d ∂ ∂ x f ( x , y ) d y \frac{d}{dx} \int_{c}^{d}f(x,y)dy=\int_{c}^{d}\frac{\partial}{\partial x} f(x,y)dy dxdcdf(x,y)dy=cdxf(x,y)dy?

答:当 f f f f x f_x fx都连续时

3.1.1 简述理由

(问题转化)LHS中导数定义是什么?
答:导数的定义是极限 d d x ∫ c d f ( x , y ) d y = lim ⁡ Δ x → 0 ∫ c d f ( x + Δ x , y ) d y − ∫ c d f ( x , y ) d y Δ x = lim ⁡ Δ x → 0 ∫ c d f ( x + Δ x , y ) − f ( x , y ) Δ x d y \frac{\text{d}}{\text{d} x}\int_c^df(x,y)dy = \lim\limits_{\Delta x\to 0}\frac{\int_c^df(x+\Delta x,y)dy-\int_c^df(x,y)dy}{\Delta x}=\lim\limits_{\Delta x\to 0}\int_c^d \frac{f(x+\Delta x,y) - f(x,y)}{\Delta x}dy dxdcdf(x,y)dy=Δx0limΔxcdf(x+Δx,y)dycdf(x,y)dy=Δx0limcdΔxf(x+Δx,y)f(x,y)dy

(问题转化)从极限的角度,如何证明 lim ⁡ Δ x → 0 ∫ c d f ( x + Δ x , y ) − f ( x , y ) Δ x d y = ∫ c d ∂ ∂ x f ( x , y ) d y \lim\limits_{\Delta x\to 0}\int_c^d \frac{f(x+\Delta x,y) - f(x,y)}{\Delta x}dy=\int_{c}^{d}\frac{\partial}{\partial x} f(x,y)dy Δx0limcdΔxf(x+Δx,y)f(x,y)dy=cdxf(x,y)dy
答:只需 lim ⁡ Δ x → 0 ∣ ∫ c d f ( x + Δ x , y ) − f ( x , y ) Δ x d y − ∫ c d f x ( x , y ) d y ∣ = 0 \lim\limits_{\Delta x\to 0} \left| \int_c^d \frac{f(x+\Delta x,y) - f(x,y)}{\Delta x}dy-\int_{c}^{d} f_x(x,y)dy \right|=0 Δx0limcdΔxf(x+Δx,y)f(x,y)dycdfx(x,y)dy=0即可
// 后面自己证吧,注意使用拉氏中值定理

3.2 什么条件下成立 d d x ∫ c ( x ) d ( x ) f ( x , y ) d y = ∫ c ( x ) d ( x ) ∂ ∂ x f ( x , y ) d y + f ( x , d ( x ) ) d ′ ( x ) − f ( x , c ( x ) ) c ′ ( x ) \frac{d}{dx} \int_{c(x)}^{d(x)}f(x,y) dy=\int_{c(x)}^{d(x)}\frac{\partial}{\partial x} f(x,y) dy+f(x,d(x))d'(x)-f(x,c(x))c'(x) dxdc(x)d(x)f(x,y)dy=c(x)d(x)xf(x,y)dy+f(x,d(x))d(x)f(x,c(x))c(x)

f f f f x f_x fx都连续,且 c ( x ) , d ( x ) c(x),d(x) c(x),d(x)都可微时

3.2.1 简述理由

(问题转化)其中有多个关于 x x x的函数,如何对其求导?
答:视为复合函数 H ( x , c ( x ) , d ( x ) ) = ∫ c ( x ) d ( x ) f ( x , y ) d y H(x,c(x),d(x))=\int_{c(x)}^{d(x)}f(x,y) dy H(x,c(x),d(x))=c(x)d(x)f(x,y)dy,再利用复合函数求导法求导
即: d d x H ( x , c , d ) = d H d x + d H d c ( x ) d c ( x ) d x + d H d d ( x ) d d ( x ) d x \frac{d}{dx}H(x,c,d)=\frac{dH}{dx}+\frac{dH}{dc(x)}\frac{ dc(x)}{dx} +\frac{\text{d}H}{\text{d}d(x)}\frac{\text{d} d(x)}{\text{d}x} dxdH(x,c,d)=dxdH+dc(x)dHdxdc(x)+dd(x)dHdxdd(x)

3.2.2 注:这个公式很重要,是被积函数和上下限积分都有参数 x x x的求导公式

4.可积性(关于 x x x的积分与 y y y的积分交换)

4.1 什么条件下成立“二次积分可交换”,即 ∫ a b [ ∫ c d f ( x , y ) d y ] d x = ∫ c d [ ∫ a b f ( x , y ) d x ] d y \int_{a}^{b}[\int_c^d f(x,y)dy]dx=\int_c^d[\int_{a}^{b} f(x,y)dx]dy ab[cdf(x,y)dy]dx=cd[abf(x,y)dx]dy

答:当f连续的时候

4.1.1 简述理由

(1)如果左右两边的导数相等,那么原式积分左右最多相差一个常数k。(问题1)左右两边导数是否相等?
(2)如果能够证明这个常数k为零,就能够证明原式的两个积分相等。(问题2)如何证明这两个积分的相差的常数k=0?

答(1.1):既然要求导,关于哪个变量求导呢?

  • 将x的上限变量化才能够求导: φ 1 ( u ) = ∫ a u [ ∫ c d f ( x , y ) d y ] d x \varphi_1(u)=\int_a^u[\int_c^df(x,y)dy]dx φ1(u)=au[cdf(x,y)dy]dx φ 2 ( u ) = ∫ c d [ ∫ a u f ( x , y ) d x ] d y \varphi_2(u)=\int_c^d[\int_a^uf(x,y)dx]dy φ2(u)=cd[auf(x,y)dx]dy
    如果 φ 1 ( u ) = φ 2 ( u ) \varphi_1(u)=\varphi_2(u) φ1(u)=φ2(u),则原式为 φ 1 ( b ) = φ 2 ( b ) \varphi_1(b)=\varphi_2(b) φ1(b)=φ2(b)是显然成立的。问题转化为如何证明 φ 1 ( u ) = φ 2 ( u ) \varphi_1(u)=\varphi_2(u) φ1(u)=φ2(u)

答(1.2):怎么证明证明他们的导数相等呢?

  • 于是求导: φ 1 ′ ( u ) = ∫ c d f ( u , y ) d y \varphi_1'(u)=\int_c^df(u,y)dy φ1(u)=cdf(u,y)dy。 # 使用了变上限积分求导公式
    φ 2 ′ ( u ) = ∫ c d [ d d u ∫ a u f ( x , y ) d x ] d y = ∫ c d f ( u , y ) d y \varphi_2'(u)=\int_c^d[\frac{d}{du}\int_a^uf(x,y)dx]dy=\int_c^df(u,y)dy φ2(u)=cd[dudauf(x,y)dx]dy=cdf(u,y)dy。# 这是由于 ∫ a u f ( x , y ) d x \int_a^uf(x,y)dx auf(x,y)dx连续(1),且 f ( x , y ) f(x,y) f(x,y)连续(2),所以由可微性可知“求导和积分的顺序可以交换”。至于(1)和(2)为什么成立,答案就在本文之中哦。
  • 由此可见导数确实相等,从而原函数只相差一个常数,即 φ 1 ( u ) − φ 2 ( u ) = k \varphi_1(u)-\varphi_2(u)=k φ1(u)φ2(u)=k

答(2.1):要证明 k = 0 k=0 k=0,只需取 u = a u=a u=a,此时 φ 1 ( a ) − φ 2 ( a ) = 0 = k \varphi_1(a)-\varphi_2(a)=0=k φ1(a)φ2(a)=0=k。# 证毕

4.1.2 能否考虑什么情况下, ∫ a ( x ) b ( x ) [ ∫ c d f ( x , y ) d y ] d x = ∫ c d [ ∫ a ( x ) b ( x ) f ( x , y ) d x ] d y \int_{a(x)}^{b(x)}[\int_c^d f(x,y)dy]dx=\int_c^d[\int_{a(x)}^{b(x)} f(x,y)dx]dy a(x)b(x)[cdf(x,y)dy]dx=cd[a(x)b(x)f(x,y)dx]dy

答:不行,形如 ∫ x 2 x 3 x d x \int_x^{2x}3x dx x2x3xdx是无法积分的

写完啦,回到开头试试看吧

参考:华东师范数学分析第十九章含参量积分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值