算法笔记——【贪心算法】单源最短路径问题

算法笔记——【贪心算法】单源最短路径问题

   1、问题描述

    给定带权有向图G=(V,E),其中每条边的权是非负实数。另外,还给定V中的一个顶点,称为源。现在要计算从源到所有其他各顶点的最短路长度。这里路的长度是指路上各边权之和。这个问题通常称为单源最短路径问题。

   2Dijkstra算法

    Dijkstra算法是解单源最短路径问题的贪心算法。
    其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。初始时,S中仅含有源。设uG的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其他顶点之间的最短路径长度。

   Dijkstra算法可描述如下,其中输入带权有向图是G=(V,E)V={1,2,…n},顶点v是源。c是一个二维数组,c[i][j]表示边(i,j)的权。当(i,j)不属于E时,c[i][j]是一个大数。dist[i]表示当前从源到顶点i的最短特殊路径长度。在Dijkstra算法中做贪心选择时,实际上是考虑S添加u之后,可能出现一条到顶点的新的特殊路,如果这条新特殊路是先经过老的S到达顶点u,然后从u经过一条边直接到达顶点i,则这种路的最短长度是dist[u]+c[u][i]。如果dist[u]+c[u][i]<dist[i],则需要更新dist[i]的值。步骤如下:

  (1) 用带权的邻接矩阵c来表示带权有向图, c[i][j]表示弧<vi,vj>上的权值。设S为已知最短路径的终点的集合,它的初始状态为空集。从源点v经过S到图上其余各点vi的当前最短路径长度的初值为:dist[i]=c[v][i],vi属于V.
   (2)
选择vu,使得dist[u]=Min{dist[i]| vi属于V-S},vj就是长度最短的最短路径的终点。令S=SU {u}.

  (3) 修改从v到集合V-S上任一顶点vi的当前最短路径长度:如果dist[u]+c[u][j]< dist[j] 则修改dist[j]= dist[u]+c[u][j]. 
   (4)
重复操作(2),(3)n-1.

类模板template<class Type>

如果使用二重以上数组,在调用函数的时候第二个数值必须要赋值,不然c++会报错:这可能是因为在函数调用的时候如果不输入第二个数值值传入数组首地址,那么cpu就不法判断这个二维数组的列大小从而报错。

算法具体实现如下:

//贪心算法 单源最短路径问题  
#include <iostream>      
#include <string>
#include <time.h>    
using namespace std;   
  
const int N = 5;  
const int M = 1000;    
  
template<class Type>  
void Dijkstra(int n,int v,Type dist[],int prev[],Type c[][N+1]);  
void Traceback(int v,int i,int prev[]);//输出最短路径 v源点,i终点  
  
int main()  
{  
    int v = 1;//源点为1  
    int dist[N+1],prev[N+1];  
  	int c[N+1][N+1]={{1000,1000,1000,1000,1000,1000},{1000,1000,10,1000,30,100},
	  				{1000,1000,1000,50,1000,1000},{1000,1000,1000,1000,1000,10},
	  				{1000,1000,1000,20,1000,60},{1000,1000,1000,1000,1000,1000}};
    	Dijkstra(N,v,dist,prev,c);   
        cout<<"源点1到点"<<N<<"的最短路径长度为:"<<dist[N]<<",其路径为";  
        Traceback(1,N,prev);  
        cout<<endl;     
    return 0;  
}  
  
  
template<class Type>  
void Dijkstra(int n,int v,Type dist[],int prev[],Type c[][N+1])  
{  
    bool s[N+1];  
    for(int i=1; i<=n; i++)  
    {  
        dist[i] = c[v][i];//dist[i]表示当前从源到v到其他顶点i的最短特殊路径长度  
        s[i] = false;  
  
        if(dist[i] == M)
        {  
            prev[i] = 0;//若果dist[i]=1000; 表示没有路径可走 
        }  
        else  
        {  
            prev[i] = v;//记录顶点i的前一个顶点,即源点v   
        }  
    }  
  
    dist[v] = 0;  
    s[v] = true;  
  
    for(int i=1; i<n; i++)  
    {  
        int temp = M;  
        int u = v;
  
        //取出V-S中具有最短特殊路径长度的顶点u  
        for(int j=1; j<=n; j++)  
        {  
            if((!s[j]) && (dist[j]<temp))//s[j]=false即没有当过结点,并且u到j有路可走  
            {  
                u = j;  
                temp = dist[j];  
            }  
        }  
        s[u] = true;  //true表示该顶点已经被取出来 
  
        //根据作出的贪心选择更新Dist值  
        for(int j=1; j<=n; j++)  
        {  
            if((!s[j]) && (c[u][j]<M))  //s[j]=false即没有当过结点,并且u到j有路可走 
            {  
                Type newdist = dist[u] + c[u][j];  
                if(newdist < dist[j])  
                {  
                    dist[j] = newdist; //更新到顶点j的最短路径 
                    prev[j] = u; //记录顶点j的前一个顶点,即u 
                }  
            }  
        }  
    }  
}  
  
//输出最短路径 v源点,i终点  
void Traceback(int v,int i,int prev[])  
{  
    if(v == i)  
    {  
        cout<<i;  
        return;  
    }  
    Traceback(v,prev[i],prev); //prev[i]记录的是前面的结点 
    cout<<"->"<<i;  
}  

例,如图中的有向图,应用 Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程如下表所示:

       3、贪心选择性质
    从V-S中选择具有最短特殊路径的顶点u,从而确定从源到u的最短路径长度dist[u]。为什么从源到u没有更短的其他路径?如图,如果存在一条从源到u且长度比dist[u]更短的路,设这条路初次走出S之外到达的顶点为x(x属于V-S),然后徘徊于S内外若干次,左后离开S到达u。在这条路上分别记d(v,x),d(x,u)和d(v,u)为顶点v到顶点x,顶点x到顶点u,顶点v到顶点u的路长。则有:

     dist[x]<=dist[u]与u是当前贪心选择矛盾!
    4、最优子结构性质
     该性质描述为:如果S(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么S(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。
     假设S(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有S(i,j)=S(i,k)+S(k,s)+S(s,j)。而S(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径S'(k,s),那么S'(i,j)=S(i,k)+S'(k,s)+S(s,j)<S(i,j)。则与S(i,j)是从i到j的最短路径相矛盾。因此该性质得证。
     5、计算复杂性
     对于一个具有n个顶点和e条边的带权有向图,如果用带权邻接矩阵表示这个图,那么Dijkstra算法的主循环体需要O(n)时间。这个循环需要执行n-1次,所以完成循环需要O(n^2)时间。算法的其余部分所需要的时间不超过O(n^2)。
     程序运行结果为:
 

 

  • 1
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值