hive
hive是基于Hadoop的一个数据仓库工具**,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。** 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
Hive是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 HQL,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。
Hive 没有专门的数据格式。 Hive 可以很好的工作在 Thrift 之上,控制分隔符,也允许用户指定数据格式。
特点:
● 支持创建索引,优化数据查询。
● 不同的存储类型,例如,纯文本文件、HBase 中的文件。
● 将元数据保存在关系数据库中,大大减少了在查询过程中执行语义检查的时间。
● 可以直接使用存储在Hadoop 文件系统中的数据。
● 内置大量用户函数UDF 来操作时间、字符串和其他的数据挖掘工具,支持用户扩展UDF 函数来完成内置函数无法实现的操作。
● 类SQL 的查询方式,将SQL 查询转换为MapReduce 的job 在Hadoop集群上执行。
● 类似api接口,本身不存储,不计算
● 依赖hdfs存储,依赖MapReduce计算
hive与hadoop的交互参考:
1、 executeQuery:用户通过Hive界面(CLI/Web UI)将查询语句发送到Driver(驱动有JDBC、ODBC等)来执行;
2、 getPlan :Driver根据查询编译器解析query语句,验证query语句的语法、查询计划、查询条件;
3、 getMetaData:编译器将元数据请求发送给Metastore;
4、 send MetaData:Metastore将元数据作为响应发送给编译器;
5、 send Plan:编译器检查要求和重新发送Driver的计划。至此,查询的解析和编译完成;
6、 execute Plan:Driver将执行计划发送给执行引擎;
6.1、 MetaDataOps for DDLs:执行引擎发送任务的同时,对hive元数据进行相应操作(直接对数据库表进行操作的(创建表、删除表等),直接与MetaStore进行交互)。
6.1、 execute Job:mapreduce执行job的过程。执行引擎发送任务到resourcemanager,resourcemanager将任务分配给nodenameger,由nodemanager分布式执行mapreduce任务。
6.2、 任务执行结束,返回执行结果给执行引擎,同步执行6.3;
6.3、 找Namenode获取数据
7、fetch Results:执行引擎接收来自数据节点(data node)的结果
8、sendResults:执行引擎发送这些合成值到Driver
9、sendResults:Driver将结果发送到hive接口
Hadoop中的数据仓库Hive详细参考:
https://blog.csdn.net/wangzi11111111/article/details/89096936#1_2