题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1166
题目大意: 给出初始化的区间值,然后有三种询问
Query a b 询问区间[a,b]值的总和
Add a b 第a个元素的值加b
Sub a b 第a个元素的值减b
解题思路: 线段树 更新:单点增减 询问:区间和
每次更新在结点存储左右子树值的和,查询时就不需要查到最低,实现区间查询
更新时间复杂度O(logN),查询时间复杂度O(logN)
代码:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX 100000
#define MID(a,b) (a+b)>>1
#define L(a) a<<1
#define R(a) (a<<1)+1
typedef struct snode{
int num,left,right;
}Node;
int num[MAX];
Node Tree[MAX<<1];
void Init()
{
memset(Tree,0,sizeof(Tree));
}
void Build(int t,int l,int r) //以t为根结点,建立左子树为l,右子树为r的线段树
{
int mid;
Tree[t].left=l,Tree[t].right=r;
if(Tree[t].left==Tree[t].right)
{
Tree[t].num=num[l];
return ;
}
mid=MID(Tree[t].left,Tree[t].right);
Build(L(t),l,mid);
Build(R(t),mid+1,r);
Tree[t].num=Tree[L(t)].num+Tree[R(t)].num;
}
void Insert(int t,int l,int r,int n) //向t为根结点,左子树为l,右子树为r的结点加上值n
{
int mid;
if(Tree[t].left==l&&Tree[t].right==r)
{
Tree[t].num+=n;
return ;
}
mid=MID(Tree[t].left,Tree[t].right);
if(r<=mid)
Insert(L(t),l,r,n);
else if(l>=mid)
Insert(R(t),l,r,n);
else
{
Insert(L(t),l,mid,n);
Insert(R(t),mid+1,r,n);
}
Tree[t].num+=n;
}
int Query(int t,int l,int r) //查询根结点为t,左子树为l,右子树为r的结点的值
{
int mid;
if(Tree[t].left==l&&Tree[t].right==r)
{
return Tree[t].num;
}
mid=MID(Tree[t].left,Tree[t].right);
if(l>mid) //***
return Query(R(t),l,r);
else if(r<=mid) //***
return Query(L(t),l,r);
else
{
int a,b;
a=Query(L(t),l,mid);
b=Query(R(t),mid+1,r);
return a+b;
}
}
int main()
{
char ch[10];
int t,n,i,i1,a,b;
scanf("%d",&t);
for(i1=1;i1<=t;i1++)
{
Init(); //初始化
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d",&num[i]);
Build(1,1,n); //以1为根结点建立线段树
printf("Case %d:\n",i1);
while(scanf("%s",ch)&&strcmp(ch,"End")!=0)
{
scanf("%d%d",&a,&b);
if(strcmp(ch,"Add")==0) //第a个元素加b
Insert(1,a,a,b);
else if(strcmp(ch,"Sub")==0) //第a个元素减b
Insert(1,a,a,-b);
else
printf("%d\n",Query(1,a,b)); //查询[a,b]区间值的总和
}
}
return 0;
}
注:原创文章,转载请注明出处