题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1394
题目大意: 给出N个数,这些数可以把后面的删掉然后放到最前面形成新的序列
可得到的N种情况,求出这N种情况哪种的逆序数最小
解题思路: 先求出第一个序列的逆序数,然后用很巧妙的办法求下一个序列的逆序数,直到全部求出
序列 4 5 2 1 3 6 ,此序列的逆序数为7,它等到的下一个序列为 5 2 1 3 6 4
看这个新序列的产生过程,首部删除4,尾部添加4
删除4,必然会使得这个序列的逆序数减少(4-1)个,因为4前面必定有4-1个数小于4
添加4,必然会使得这个序列的逆序数增加(6-4)个,因为4后面必定有6-4个数大于4
由此推出公式,假设移动的数为m,序列的逆序数=上一序列逆序数-(m-1)+(N-m)
由于给出的序列不是顺序的,所以先要离散化出来
代码:
// 线段树
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
using namespace std;
#define MAX 5100
#define INF 0x3f3f3f3f
#define MID(a,b) (a+b)>>1
#define R(a) (a<<1|1)
#define L(a) a<<1
typedef struct {
int num,left,right;
}Node;
typedef struct {
int num,y;
}Nodes;
Nodes ans[MAX];
Node Tree[MAX<<2];
int n;
bool cmp(Nodes a,Nodes b)
{
return a.num>b.num?0:1;
}
bool cmp2(Nodes a,Nodes b)
{
return a.y>b.y?0:1;
}
void Build(int t,int l,int r) //以1为根节点建立线段树
{
int mid;
Tree[t].left=l,Tree[t].right=r;
if(Tree[t].left==Tree[t].right)
{
Tree[t].num=0;
return ;
}
mid=MID(Tree[t].left,Tree[t].right);
Build(L(t),l,mid);
Build(R(t),mid+1,r);
}
void Insert(int t,int l,int r,int x) //向以1为根节点的区间[l,r]插入数字1
{
int mid;
if(Tree[t].left==l&&Tree[t].right==r)
{
Tree[t].num+=x;
return ;
}
mid=MID(Tree[t].left,Tree[t].right);
if(l>mid)
{
Insert(R(t),l,r,x);
}
else if(r<=mid)
{
Insert(L(t),l,r,x);
}
else
{
Insert(L(t),l,mid,x);
Insert(R(t),mid+1,r,x);
}
Tree[t].num=Tree[L(t)].num+Tree[R(t)].num;
}
int Query(int t,int l,int r) //查询以1为根节点,区间[l,r]的和
{
int mid;
if(Tree[t].left==l&&Tree[t].right==r)
return Tree[t].num;
mid=MID(Tree[t].left,Tree[t].right);
if(l>mid)
{
return Query(R(t),l,r);
}
else if(r<=mid)
{
return Query(L(t),l,r);
}
else
{
return Query(L(t),l,mid)+Query(R(t),mid+1,r);
}
}
int main()
{
int a,n,i,t,min;
long long int k;
while(scanf("%d",&n)!=EOF)
{
memset(Tree,0,sizeof(Tree)); //初始化
Build(1,1,n); //建立线段树
for(i=1;i<=n;i++)
{
scanf("%d",&ans[i].num);
ans[i].y=i;
}
sort(ans+1,ans+1+n,cmp); //离散化
for(i=1;i<=n;i++) //离散化
ans[i].num=i;
sort(ans+1,ans+1+n,cmp2);
for(i=1,k=0;i<=n;i++)
{
a=ans[i].num;
Insert(1,a,a,1);
k=k+(i-Query(1,1,a)); //求出第一个序列的逆序数
}
min=INF;
for(i=1;i<=n;i++) //O(n)求出所有序列的逆序数,并且取最小的
{
k=k-(ans[i].num-1)+(n-ans[i].num);
if(min>k)
min=k;
}
printf("%d\n",min);
}
return 0;
}
注:原创文章,转载请注明出处