最大子矩阵(降维处理)

21 篇文章 0 订阅

题目描述

已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。
比如,如下4 * 4的矩阵

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。

 

输入

输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。
再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。
已知矩阵中整数的范围都在[-127, 127]。

输出

测试数据可能有多组,对于每组测试数据,输出最大子矩阵的大小。

样例输入

1
27 
3
-40 29 -16 
38 18 22 
24 -35 5 

样例输出 

27
78

 子矩阵求和的打表法:用sum[ i ][ j ]记录第 j 列前 i 行的和。

这里把矩阵第 k 列的第 i 行与第 j 行之间的和称之为子段和,我们把每一列的子段和映射到一维数组,那么问题就变成了求“一个数组中的最大连续子段和”,可以用“求最大连续子序列”的思想

处理最大连续子段和主要是多了两重循环,这两重循环是为了选择矩阵中的两行,作为子段的开始行结束行

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include <string>
#include <queue>
#include <cstring>
#include <vector>
#include <set>
using namespace std;
typedef long long ll;
#define maxn 108
ll sum[maxn][maxn];
const int INF = 0x3fffffff;

int main() {
	int n, num;
	while (cin >> n && n) {
		fill(sum[0], sum[0] + maxn*maxn, 0);
		for (int i = 1; i <= n; i++) {
			for (int j = 1; j <= n; j++) {
				cin >> num;
				sum[i][j] = sum[i - 1][j] + num;
			}
		}

		ll MAX = -INF;
		for (int i = 0; i < n; i++) {
			for (int j = i + 1; j <= n; j++) {
				ll s = 0;//s记录以第k个段结尾时的最大连续子段和
				for (int k = 1; k <= n; k++) {
					s = max(s + sum[j][k] - sum[i][k], sum[j][k] - sum[i][k]);
					if (s > MAX)MAX = s;//MAX保存所有连续子段的最大和(即最大矩阵的值)
				}
			}
		}
		cout << MAX << endl;
	}
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值