题目描述
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。
比如,如下4 * 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。
输入
输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。
再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。
已知矩阵中整数的范围都在[-127, 127]。输出
测试数据可能有多组,对于每组测试数据,输出最大子矩阵的大小。
样例输入
1 27 3 -40 29 -16 38 18 22 24 -35 5样例输出
27 78
子矩阵求和的打表法:用sum[ i ][ j ]记录第 j 列前 i 行的和。
这里把矩阵第 k 列的第 i 行与第 j 行之间的和称之为子段和,我们把每一列的子段和映射到一维数组,那么问题就变成了求“一个数组中的最大连续子段和”,可以用“求最大连续子序列”的思想
处理最大连续子段和主要是多了两重循环,这两重循环是为了选择矩阵中的两行,作为子段的开始行与结束行
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include <string>
#include <queue>
#include <cstring>
#include <vector>
#include <set>
using namespace std;
typedef long long ll;
#define maxn 108
ll sum[maxn][maxn];
const int INF = 0x3fffffff;
int main() {
int n, num;
while (cin >> n && n) {
fill(sum[0], sum[0] + maxn*maxn, 0);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
cin >> num;
sum[i][j] = sum[i - 1][j] + num;
}
}
ll MAX = -INF;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j <= n; j++) {
ll s = 0;//s记录以第k个段结尾时的最大连续子段和
for (int k = 1; k <= n; k++) {
s = max(s + sum[j][k] - sum[i][k], sum[j][k] - sum[i][k]);
if (s > MAX)MAX = s;//MAX保存所有连续子段的最大和(即最大矩阵的值)
}
}
}
cout << MAX << endl;
}
}