#分类
1 进入https://github.com/tensorflow/models/tree/master/research/slim 下载
2 详细请看:
https://github.com/LiYangDoYourself/tensorflow-slim
https://github.com/LiYangDoYourself/new_tensorflow_slim
1 准备数据集
train_images ,validation_images :里面是分类名字(0-13),对应的就是分类的图片
label.txt :里面分类名字 (0-13)
2 将准备好的数据转换成tfrecord格式
执行:convert_image_to_tfrecords.py
注意:执行之前需要修改 /datasets/common_dataset_provides.py 里的类别数量和训练的图片数量
参数:train_directory :存放训练的数据的路径
validation_directory:存放测试用的数据的路径
output_directory:要存放tfrecord数据的路径
labels_file:标签路径
other :就是开启多少个线程读取数据
3训练数据
执行 train_image_classifier.py
参数:train_dir: 存放模型的路径
dataset_dir:存放tfrecord的数据的路径(就是上一步转换完的output_directory的路径)
model_name:网络层使用mobilenet_v1
train_image_size_height,train_image_size_width:图片大小
4 固话模型
export_inference_graph.py :导入计算图
俩个参数 :1输入数据的大小 2pb文件名字(随便起)
freeze_graph.py:将计算图与数据一起导入到pb模型中
参数1 上面pb文件名字 参数2 checkpoint名字(训练完模型存放的路径) 参数3 输出pb文件的名字 参数4 输出结点名字