Tensorflow-slim 做扑克,麻将,花牌的分类

#分类
1 进入https://github.com/tensorflow/models/tree/master/research/slim 下载
2 详细请看:
https://github.com/LiYangDoYourself/tensorflow-slim
https://github.com/LiYangDoYourself/new_tensorflow_slim

1 准备数据集

train_images ,validation_images :里面是分类名字(0-13),对应的就是分类的图片
label.txt :里面分类名字 (0-13)
在这里插入图片描述
在这里插入图片描述

2 将准备好的数据转换成tfrecord格式

执行:convert_image_to_tfrecords.py
注意:执行之前需要修改 /datasets/common_dataset_provides.py 里的类别数量和训练的图片数量
参数:train_directory :存放训练的数据的路径
validation_directory:存放测试用的数据的路径
output_directory:要存放tfrecord数据的路径
labels_file:标签路径
other :就是开启多少个线程读取数据在这里插入图片描述

3训练数据

执行 train_image_classifier.py
参数:train_dir: 存放模型的路径
dataset_dir:存放tfrecord的数据的路径(就是上一步转换完的output_directory的路径)
model_name:网络层使用mobilenet_v1
train_image_size_height,train_image_size_width:图片大小
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 固话模型

export_inference_graph.py :导入计算图
俩个参数 :1输入数据的大小 2pb文件名字(随便起)

freeze_graph.py:将计算图与数据一起导入到pb模型中
参数1 上面pb文件名字 参数2 checkpoint名字(训练完模型存放的路径) 参数3 输出pb文件的名字 参数4 输出结点名字

5 完成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值