题目:螺旋折线
如图p1.pgn所示的螺旋折线经过平面上所有整点恰好一次。
对于整点(X, Y),我们定义它到原点的距离dis(X, Y)是从原点到(X, Y)的螺旋折线段的长度。
例如dis(0, 1)=3, dis(-2, -1)=9
给出整点坐标(X, Y),你能计算出dis(X, Y)吗?
【输入格式】
X和Y
对于40%的数据,-1000 <= X, Y <= 1000
对于70%的数据,-100000 <= X, Y <= 100000
对于100%的数据, -1000000000 <= X, Y <= 1000000000
90000000
【输出格式】
输出dis(X, Y)
【输入样例】
0 1
【输出样例】
3
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理。
1. 思路
看到网上很多人用的方法都是去模拟算边,算点,感觉这种方法比较麻烦,而且容易出错
我的方法是去算正方形的长度,仔细观察这张图,我们只要把左下的一条边顺时针旋转90°,就能得到一个正方形
然后我们只要操作两个步骤:
1. 计算这个点之前的所有正方形
2. 计算这个点所在的几条边
再将1和2计算的长度相加,即得到原点到(X, Y)的螺旋折线段的长度。
2. 设计步骤
我们举个例子,假设我们要计算point(-1, 2)
这个点
第一个步骤相当简单,我们发现每个正方形都是一个等差数列
这个数列是8, 16, 24, 32....
所以我们拿前n项和公式来算就行,注意算这个点之前所在所有正方形的和
第二个步骤需要一些技巧,我们发现,我们将左下的边旋转之后,对应着的点是(-1, -1), (-2, -2), (-3, -3)....(-n, -n)
所以我们从这个点开始,计算这个点到point(-1, 2)
的边距离
可以看到,有这样的小技巧
- 当y >= x时,即y=x图像的上半区,第二步的长度计算就是图中的蓝色线条。(如图所示)
- 当y <= x时,即y=x图像的下半区,第二步的长度计算就是正方形长度减去蓝色线条。(这里没画图,大家可以自己动手画一画)
最后我们加上两个步骤算出来的距离,就得到了答案(如果是C语言的朋友只要把输入输出和数据类型改一下就好了,代码思路是一样的)
3. 代码
package eighth.provincial.competition;
import java.util.Scanner;
public class G {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
long X = in.nextLong();
long Y = in.nextLong();
// 判断所在点所在的正方形
long n = Math.max(Math.abs(X) , Math.abs(Y));
// 1. 之前正方形的长度和
long Sn = 4*(n-1)*n;
// 2. 计算点(-n, -n) 到点(X, Y)的距离, 考虑清楚情况
long sum = 0;
long px = -n, py = -n;
long d1 = X-px, d2 = Y-py;
if (Y > X) {
sum += (d1+d2);
} else {
sum += (8*n-d1-d2);
}
System.out.println(sum + Sn);
}
}