ubunt18.04下安装cuda10.1+cudnn7.6.5+caffe+openpose
手动安装nvidia-418.113
1.官网下载nvidia驱动
https://www.geforce.cn/drivers在该网站选择对应的驱动
2.卸载本身的驱动
sudo apt-get remove --purge nvidia-*
sudo apt-get install ubuntu-desktop
echo 'nouveau' | sudo tee -a /etc/modules
3.禁用nouveau,打开编辑配置文件:
sudo gedit /etc/modprobe.d/blacklist.conf
在后面两行添加
blacklist nouveau
options nouveau modeset=0
4.更新 sudo update-initramfs -u 如果lsmod | grep nouveau 没有输出的话则表示禁用了
重启
5.ctrl+alt+f4 执行sudo service lightdm stop
sudo service gdm stop
sudo service mdm stop
6.若中文乱码 sudo apt-get install fbterm
sudo fbterm
7.进入下载的目录 安装 sudo chmod a+x .run
sudo ./ -no-opengl-files
8.通过nvidia-smi来检查驱动是否已经安装完成
安装CUDA 10.1
1.进入https://developer.nvidia.com/cuda-downloads选择base installer存放在home文件夹下
2.禁用nouveau驱动
3.执行安装脚本sudo sh cuda_***_linux.run continue大部分都是accept
4.设置环境变量
在~/.bashrc文件里添加
export LD_LIBRARY_PATH=
L
D
L
I
B
R
A
R
Y
P
A
T
H
:
/
u
s
r
/
l
o
c
a
l
/
c
u
d
a
−
10.1
/
l
i
b
64
e
x
p
o
r
t
P
A
T
H
=
LD_LIBRARY_PATH:/usr/local/cuda-10.1/lib64 export PATH=
LDLIBRARYPATH:/usr/local/cuda−10.1/lib64exportPATH=PATH:/usr/local/cuda-10.1/bin
5.source ~/.bashrc
6.cat /proc/driver/nvidia/version检查是否安装成功
安装cudnn 7.6.5
1.下载https://developer.nvidia.com/rdp/cudnn-archive
2.进入cuda的include的文件夹下面,执行
sudo cp cudnn.h /usr/local/cuda/include/
3.进入cuda/lib64运行
sudo cp lib* /usr/local/cuda/lib64/
cd /usr/local/cuda/lib64/
sudo rm -rf libcudnn.so libcudnn.so.7
sudo ln -s libcudnn.so.7.0.5 libcudnn.so.7
sudo ln -s libcudnn.so.7 libcudnn.so
4.gedit /etc/ld.so.conf.d/cuda.conf
输入/usr/local/cuda/lib34
5.sudo ldconfig
检查一下sudo ldconfig -v
nvcc -V
安装caffe
如果想安装openpose,从openpose中的caffe下载
1.安装基本库
sudo apt-get install libatlas-base-dev
sudo apt-get install libgoogle-glog-dev
sudo apt-get install -y build-essential cmake git pkg-config
sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install -y --no-install-recommends libboost-all-dev
sudo apt-get install -y libgflags-dev libgoogle-glog-dev liblmdb-dev
- 获取caffe:
在openpose的caffe中下载
3.安装需要的依赖包:
cd caffe/python
sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook python-pandas python-sympy
安装requirement里面的包
sudo su
for req in $(cat requirements.txt); do pip install $req; done
4.修改配置文件
cd ~/caffe
cp Makefile.config.example Makefile.config
gedit Makefile.config
使用cuDNN # USE_CUDNN := 1 ,这里去掉#,取消注释
使用opencv3,将#OPENCV_VERSION := 0 修改为: OPENCV_VERSION := 3
若要使用python来编写layer,则 #WITH_PYTHON_LAYER := 1,前面的#号去掉。
将# Whatever else you find you need goes here. 下面的
1 INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
2 LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
修改为
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
5.修改makefile文件:
打开makefile文件,做如下修改:
NVCCFLAGS += -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)
替换为:
NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)
然后把
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5
修改为:
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial
将LIBRARIES += boost_thread stdc++修改为:
LIBRARIES += boost_thread stdc++ boost_regex
6.编译:
make all –j8
make test –j8
make runtest –j8
7.编译pycaffe
在caffe根目录的python文件夹下,有一个requirements.txt的清单文件,上面列出了需要的依赖库,按照这个清单安装就可以了。
在安装scipy库的时候,需要fortran编译器(gfortran),如果没有这个编译器就会报错,因此,我们可以先安装一下。
首先回到caffe的根目录,然后执行安装代码:
cd ~/caffe
sudo apt-get install gfortran
cd ./python
sudo su
for req in $(cat requirements.txt); do pip install $req; done
安装完成以后,再次回到caffe根目录我们可以执行:
cd ..
cd caffe
sudo pip install -r python/requirements.txt
就会看到,安装成功的,都会显示Requirement already satisfied, 没有安装成功的,会继续安装。
9.编译python接口:
make pycaffe -j8
配置环境变量,以便python调用:
sudo gedit ~/.bashrc
将export PYTHONPATH=/home/caffe/python:$PYTHONPATH添加到文件中
source ~/.bashrc
参考链接
https://blog.csdn.net/weixin_39059031/article/details/84823717