开源模型应用落地-模型记忆增强-概念篇(一)

本文介绍了如何通过记忆增强技术提升深度学习语言模型的记忆能力,特别是探讨了长期记忆模块和向量数据库的角色。重点讨论了Milvus作为向量数据库在存储和处理大规模高维向量数据中的应用,以及轻量级版本Milvus Lite的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

    语言模型的记忆是基于其训练数据。具体而言,对于较长的文本,模型可能会遗忘较早的信息,因为它的记忆是有限的,并且更容易受到最近出现的内容的影响。模型无法跨越其固定的上下文窗口,而是根据当前上下文生成回应。

    提升模型记忆能力有多种方法,比如改进模型的结构、引入注意力机制、使用长期记忆模块等。但对于目前已经公开的大型语言模型来说,对模型结构进行优化已经超出了许多中小企业的能力范围。因此,本系列将专注于使用长期记忆模块的方式来解释。


二、术语

2.1.记忆能力

    在处理文本时能够保留和利用过去的信息。语言模型通过学习大量的文本数据,建立了对语言的统计模型,以便预测下一个词或短语。在这个过程中,模型会通过观察上下文中的单词和短语来推断下一个可能的词。

2.2.上下文长度(context length)

    语言模型在生成文本时所考虑的前面的文本部分的长度。在生成下一个词或短语时,模型会参考前面一定长度的上下文来进行预测。

2.3.记忆增强(Memory Augmentation)

    是指通过不同的技术手段和方法来增强模型的记忆能力。

2.4.长期记忆模块

    是一种用于存储和管理长期记忆的组件或结构。它在人工智能系统中扮演着重要的角色,特别是在处理需要长期知识和经验的任务时。

以下是长期记忆模块的一些主要特点和功能࿱

评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开源技术探险家

以微薄之力温暖这个世界

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值