java人脸识别的学生考勤请假选课系统springboot+vue

功能和技术介绍

探索如何设计一个用户友好、响应迅速的系统界面,确保系统后端逻辑的高效和稳定性。研究如何通过Spring Boot实现系统的快速开发和部署,利用Vue构建动态的前端页面,以及如何通过MySQL进行高效的数据管理和查询。
系统决定采用Vue.js作为前端框架,因其易用、灵活且支持组件化开发,适合快速开发动态交互的Web应用。Vue.js的生态系统丰富,社区支持强大,可以有效地加速开发进程和提高前端开发效率。经过评估,Vue.js完全满足系统对前端技术的需求。
系统后端选择Spring Boot框架,该框架基于Java,支持快速开发、微服务架构,且易于部署。Spring Boot广泛应用于企业级应用中,稳定性和性能都得到了验证。结合MyBatis作为持久层框架,可以简化数据库操作,提高数据处理效率。这套技术栈既符合现代Web应用开发的趋势,也满足了系统对后端技术的要求。

jdk版本:jdk1.8+
编程语言: java
框架支持:springboot
数据库: mysql 版本不限
数据库工具:Navicat/SQLyog都可以
前端:vue.js+ElementUI
开发工具:IDEA 或者eclipse都支持
技术范围:uniapp框架,Android,Kotlin框架,koa框架,express框架,go语言,laravel框架,thinkphp框架,springcloud,django,flask框架,SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。

系统实现截图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据库设计

利用数据模型可以表示不同的类,概念性模型没有固定的模型,因此用户可以按照自己的想法进行建立概念性数据模型。概念模型可以用E.R图表示,E.R图又称为数据模型。

开发核心技术介绍:

Spring框架是一种全面的编程和配置模型,为现代基于Java的企业应用提供了全面的基础架构支持。Spring的设计初衷是为了解决企业应用开发的复杂性,提供了一种更简单的方法来实现各个组件间的松耦合。这一点对于开发学生选课推荐系统尤其重要,因为该系统需要集成多种技术和组件,包括数据库操作、Web服务和安全控制等。
在系统开发基础上,选择了Windows 10操作系统、Java编程语言和MySQL数据库,以及IDEA软件作为开发环境。这一选择基于对当前技术发展趋势的理解和对系统需求的分析,旨在利用这些成熟的技术和工具,提高开发效率,确保系统的稳定性和可扩展性。

Node.js是一种基于Chrome V8 JavaScript引擎的JavaScript运行环境,使得JavaScript能够在服务器端运行
Java
Java具有典型的继承、封装多态特征,可以使用类和接口,并进行输入输出数据流,支持多线程和反射、以及网络编程。Java语言的多态提供方法中的和复写,Java语言不仅仅可以支持后台框架的开发,也可以与web前端进行融合,支持常用的HTML标签和css、js、vue、node.js融合,开发出功能完备的公司应用开发。

Spring封装了很多的java类库文件,在开发过程中,不需要写太多复杂的类文件,只需要引用spring这个框架,就可以完成快速开发的需要,所以Java编程的逻辑代码就变得比较清晰,各层之间的解耦性也比较强,可重用性也得到了很好的发挥,使得开发难度也更加轻松容易,它的主要两个特性就是依赖注入、面向接口思想;(AOP)切面思想;

Vue免除了Javascript的dom操作,可以更快速的完成数据绑定。Vue实现了MVVM框架,通过后台的模型进行业务逻辑的处理,并将数据绑定到视图层中,在视图层绑定显示控件,将Model对象的数据绑定到页面控件中,实现数据的自动同步。当Model数据改变时,View页面可以根据数据自动发生改变。

MySQL还具备良好的可视化管理工具[8],MySQL Workbench,这些工具不仅提供了数据库设计、开发、管理和维护的全套解决方案,还能通过图形界面使数据库的管理变得简单易操作。这对于系统的开发和维护来说,意味着可以更高效地进行数据库的设计优化和日常管理,确保系统的稳定运行和数据的准确性。。

代码执行流程

Controller层的数据主要是通过调用Service层进行处理,并得到结果,然后对结果进行保存,可以分析结果数据,判断结果是否符合预期,最终将信息返回到View层中。在接口层也需要先定义功能实现的类,并定义接口的参数和返回值,比如数据库的增删改查,数据统计,数据分类处理。在接口实现类中对接口方法进行具体的实现,在方法实现中调用Dao层的方法,并传入对应的参数,得到结果后返回信息到Controller层中。

核心代码部分展示

协同过滤算法是一种广泛应用于推荐系统的算法,特别适合处理那些基于用户行为和偏好来提供个性化推荐的场景

/**
 * 协同过滤算法
 */
public UserBasedCollaborativeFiltering(Map<String, Map<String, Double>> userRatings) {
       this.userRatings = userRatings;
        this.itemUsers = new HashMap<>();
        this.userIndex = new HashMap<>();//辅助存储每一个用户的用户索引index映射:user->index
        this.indexUser = new HashMap<>();//辅助存储每一个索引index对应的用户映射:index->user
        // 构建物品-用户倒排表
        int keyIndex = 0;
        for (String user : userRatings.keySet()) {
            Map<String, Double> ratings = userRatings.get(user);
            for (String item : ratings.keySet()) {
                if (!itemUsers.containsKey(item)) {
                    itemUsers.put(item, new ArrayList<>());
                }
                itemUsers.get(item).add(user);
            }
          //用户ID与稀疏矩阵建立对应关系
            this.userIndex.put(user,keyIndex);
            this.indexUser.put(keyIndex,user);
            keyIndex++;
        }
        int N = userRatings.size();
        this.sparseMatrix=new Long[N][N];//建立用户稀疏矩阵,用于用户相似度计算【相似度矩阵】
        for(int i=0;i<N;i++){
            for(int j=0;j<N;j++)
               this.sparseMatrix[i][j]=(long)0;
        }
        for(String item : itemUsers.keySet()) {
           List<String> userList = itemUsers.get(item);
           for(String u1 : userList) {
              for(String u2 : userList) {
                 if(u1.equals(u2)){
                        continue;
                    }
                 this.sparseMatrix[this.userIndex.get(u1)][this.userIndex.get(u2)]+=1;
              }
           }
        }
    }
    public double calculateSimilarity(String user1, String user2) {
        //计算用户之间的相似度【余弦相似性】
        Integer id1 = this.userIndex.get(user1);
        Integer id2 = this.userIndex.get(user2);
        if(id1==null || id2==null) return 0.0;
        return this.sparseMatrix[id1][id2]/Math.sqrt(userRatings.get(indexUser.get(id1)).size()*userRatings.get(indexUser.get(id2)).size());
    }

    public List<String> recommendItems(String targetUser, int numRecommendations) {
        // 计算目标用户与其他用户的相似度
        Map<String, Double> userSimilarities = new HashMap<>();
        for (String user : userRatings.keySet()) {
            if (!user.equals(targetUser)) {
                double similarity = calculateSimilarity(targetUser, user);
                userSimilarities.put(user, similarity);
            }
        }
        // 根据相似度进行排序
        List<Map.Entry<String, Double>> sortedSimilarities = new ArrayList<>(userSimilarities.entrySet());
        sortedSimilarities.sort(Map.Entry.comparingByValue(Comparator.reverseOrder()));
        // 选择相似度最高的K个用户
        List<String> similarUsers = new ArrayList<>();
        for (int i = 0; i < numRecommendations; i++) {
            if (i < sortedSimilarities.size()) {
                similarUsers.add(sortedSimilarities.get(i).getKey());
            } else {
                break;
            }
        }
        // 获取相似用户喜欢的物品,并进行推荐
        Map<String, Double> recommendations = new HashMap<>();
        for (String user : similarUsers) {
            Map<String, Double> ratings = userRatings.get(user);
            for (String item : ratings.keySet()) {
                if (userRatings.get(targetUser)!=null && !userRatings.get(targetUser).containsKey(item)) {
                    recommendations.put(item, ratings.get(item));
                }
            }
        }



系统测试

在开始模块测试之前,需要配置好测试环境,包括部署应用服务器Tomcat,并在开发环境中使用适当的编译器准备测试所需的编译运行环境。通过在前端页面输入测试数据,结合在后端逻辑代码中设置断点进行逐步调试,从而检查每个功能模块的运行是否符合预期。通过控制台输出和日志记录,可以有效地追踪数据处理过程和结果,对不符合要求的部分进行精确定位和修正。

其他springboot项目推荐

基于spring boot+vue的流浪宠物领养救助管理系统
基于spring boot成人自考本科教育网站设计与实现
java基于 SpringBoot 的高校实验室预约系统设计与实现_8042nq26-vue
java基于 Springboot的社区康养管理系统的设计与实现_x4lt5k3o-vue
基于spring boot的学生宿舍分配报修管理系统
基于Spring Boot的实验室设备管理系统的设计与实现
基于Spring Boot的小区停车位短租管理系统的设计与实现java 沙箱支付
基于spring boot的高校毕业生房屋租赁平台设计与实现
springboot基于Java+Springboot的房屋租赁管理系统_f0z2t52p-vue
springboot基于JavaWeb的社区老人健康管理系统设计与实现_01389843-vue
springboot基于Java的一鸣企业人事管理系 统的设计与实现_cg88z7k0-vue
基于Springboot+vue的宠物之家领养救助管理系统的设计与实现
基于SpringBoot和Vue的地方美食分享与推荐网站的设计与实现 爬虫可视化大屏
基于springboot实现新能源汽车4s店管理系统
基于springboot框架的在线导游预约系统
基于springboot模式鲜花售卖商城花店网站的设计与实现限时秒杀
基于Springboot电子书店好书推荐管理系统
基于SpringBoot的健身房系统的设计与实现
基于SpringBoot的医疗护工陪护系统的设计与实现
springboot基于Java的养老院管理系统的设计与实现_ssnel0ot-vue
springboot基于Java的办公楼物业管理系统的设计与实现_py67qik4 -vue
springboot基于java的商户点评管理与数据分析系统_21g8a524 -vue
springboot基于Springboot美妆类免税商品选购系统演示录像2023_0p6l7477-vue
基于SpringBoot的大学生就业服务平台四个角色
基于SpringBoot的宠物爱好者交流商城系统的设计与实现
基于springboot的摄影跟拍预定管理系统的设计与实现
基于SpringBoot的流浪猫救助领养系统
基于SpringBoot的电子游戏管理系统的设计与实现
基于SpringBoot的电视剧评分推荐系统设计与实现
基于springboot的高校学生体质体测报名管理系统
基于SpringBoot的高校教材订阅选购管理系统的设计与实现
基于Spring框架的电影票务信息系统的设计与实现

详细视频演示

请联系我获取更详细的演示视频

源码获取

需要成品,加我们的时候,记得把本页面标题截图发下我,方便查找相应的源代码。可以的话 顺便点赞!
文章最下方名片联系我即可~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值