题目大意:
JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,
他们现在使用的是GW文本生成器v6版。该软件可以随机生成一些文章―――总是生成一篇长度固定且完全随机的文
章—— 也就是说,生成的文章中每个字节都是完全随机的。如果一篇文章中至少包含使用者们了解的一个单词,
那么我们说这篇文章是可读的(我们称文章a包含单词b,当且仅当单词b是文章a的子串)。但是,即使按照这样的
标准,使用者现在使用的GW文本生成器v6版所生成的文章也是几乎完全不可读的?。ZYX需要指出GW文本生成器 v6
生成的所有文本中可读文本的数量,以便能够成功获得v7更新版。你能帮助他吗?
就是求出长度为n的随机字符串,包含一个以上可读字符串的数量。
思路:
这题如若要正着来,你会发现会很麻烦,因为需要容斥,根本做不了这么大的范围,所以我们可以反着来,求出所有不符合题目要求的,然后用所有的字符串数量减掉不符合题目要求的。求不合法的方案数我们设出dp,f[i][j]表示我们走了i步走到了ac自动机上的j节点的方案数。空的trie节点可以不用管
程序:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#define N 6000
#define mo 10007
char ch[N];
int trie[N][27],fail[N],tot,val[N],f[N][N],n,m;
std::queue<int>q;
void insert(){
int now=0,len=strlen(ch);
for (int i=0;i<len;i++){
int u=ch[i]-'0';
if (trie[now][u]) now=trie[now][u];
else now=trie[now][u]=++tot;
}
val[now]=1;
}
void getfail(){
for (int i=0;i<26;i++)
if (trie[0][i]) q.push(trie[0][i]);
while (!q.empty()){
int r=q.front();
q.pop();
for (int i=0;i<26;i++)
if (trie[r][i]){
int u=trie[r][i],v=fail[r];
q.push(u);
while (v&&!trie[v][i]) v=fail[v];
v=trie[v][i];
if (val[v]) val[u]=1;
fail[u]=v;
}
}
}
void dp(){
f[0][0]=1;
for (int i=1;i<=m;i++)
for (int j=0;j<=tot;j++)
if (!val[j]&&f[i-1][j])
for (int k=0;k<26;k++){
int u=j;
while (u&&!trie[u][k]) u=fail[u];
f[i][trie[u][k]]=(f[i][trie[u][k]]+f[i-1][j])%mo;
}
}
int main(){
freopen("a.in","r",stdin);
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++){
scanf("%s",ch);
insert();
}
getfail();
dp();
int ans1=0,ans2=1;
for (int i=1;i<=m;i++) ans2=ans2*26%mo;
for (int i=0;i<tot;i++) if (!val[i]) ans1=(ans1+f[m][i])%mo;
printf("%d",(ans2-ans1+mo)%mo);
}