区间DP模型

本文介绍了四个编程题目:环形石子合并的动态规划解法,能量项链的最优合并策略,加分二叉树的构建,以及凸多边形分割的最小总权值乘积问题。每个题目都利用了动态规划的思想,通过状态转移方程求解最优化问题。
摘要由CSDN通过智能技术生成


环形石子合并

题目描述:

n n n 堆石子绕圆形操场排放,现要将石子有序地合并成一堆。

规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆的石子数记做该次合并的得分。

请编写一个程序,读入堆数 n n n 及每堆的石子数,并进行如下计算:

选择一种合并石子的方案,使得做 n − 1 n−1 n1 次合并得分总和最大。
选择一种合并石子的方案,使得做 n − 1 n−1 n1 次合并得分总和最小。

输入格式
第一行包含整数 n n n,表示共有 n n n 堆石子。

第二行包含 n n n 个整数,分别表示每堆石子的数量。

输出格式
输出共两行:

第一行为合并得分总和最小值,第二行为合并得分总和最大值。

数据范围
1 ≤ n ≤ 200 1≤n≤200 1n200

输入样例:

4
4 5 9 4

输出样例:

43
54

思路

通过把原数组复制元素扩容到原来的两倍,这样便利起始位置 start [ 0 , n ) [0, n) [0,n),长度为 n n n,这样终止位置便为 [ 0 + n − 1 , n + n − 1 ) [0 + n - 1, n + n - 1) [0+n1,n+n1),用普通的石子区间DP遍历这样的几个 s t a r t start start 就可以得到最终答案。这样模拟起始位置相当于,模拟环状的各种断裂位置。

在这里插入图片描述


代码实现

import sys
from math import inf
input = sys.stdin.readline

n = int(input().strip())
nums = list(map(int, input().strip().split()))
nums = nums + nums

s = [0 for _ in range(2 * n + 1)]
for i in range(2 * n):
    s[i + 1] = s[i] + nums[i]
    

f = [[0 for _ in range(2 * n)] for _ in range(2 * n)]
for i in range(2 * n - 2, -1, -1):
    for j in range(i + 1, 2 * n - 1):
        f[i][j] = min(f[i][k] + f[k + 1][j] + s[j + 1] - s[i] for k in range(i, j))
print(min(f[start][start + n - 1] for start in range(n)))

f = [[0 for _ in range(2 * n)] for _ in range(2 * n)]
for i in range(2 * n - 2, -1, -1):
    for j in range(i + 1, 2 * n - 1):
        f[i][j] = max(f[i][k] + f[k + 1][j] + s[j + 1] - s[i] for k in range(i, j))
print(max(f[start][start + n - 1] for start in range(n)))

能量项链

题目描述:

M a r s Mars Mars 星球上,每个 M a r s Mars Mars 人都随身佩带着一串能量项链,在项链上有 N N N 颗能量珠。

能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。

并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记

因为只有这样,通过吸盘(吸盘是 M a r s Mars Mars 人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。

如果前一颗能量珠的头标记为 m m m,尾标记为 r r r,后一颗能量珠的头标记为 r r r,尾标记为 n n n,则聚合后释放的能量为 m × r × n m×r×n m×r×n M a r s Mars Mars 单位),新产生的珠子的头标记为 m m m,尾标记为 n n n

需要时, M a r s Mars Mars 人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。

显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。

例如:设 N = 4 N=4 N=4 4 4 4 颗珠子的头标记与尾标记依次为 ( 2 , 3 ) ( 3 , 5 ) ( 5 , 10 ) ( 10 , 2 ) (2, 3) (3, 5) (5, 10) (10, 2) (2,3)(3,5)(5,10)(10,2)

我们用记号 ⊕ ⊕ 表示两颗珠子的聚合操作, ( j ⊕ k ) (j⊕k) (jk) 表示第 j , k j, k j,k 两颗珠子聚合后所释放的能量。则第 4 、 1 4、1 41 两颗珠子聚合后释放的能量为: ( 4 ⊕ 1 ) = 10 × 2 × 3 = 60 (4⊕1) = 10×2×3 = 60 (41)=10×2×3=60

这一串项链可以得到最优值的一个聚合顺序所释放的总能量为 ( ( 4 ⊕ 1 ) ⊕ 2 ) ⊕ 3 ) = 10 × 2 × 3 + 10 × 3 × 5 + 10 × 5 × 10 = 710 ((4⊕1)⊕2)⊕3) = 10×2×3 + 10×3×5 + 10×5×10 = 710 ((41)2)3)=10×2×3+10×3×5+10×5×10=710

输入格式:

输入的第一行是一个正整数 N N N ,表示项链上珠子的个数。

第二行是 N N N 个用空格隔开的正整数,所有的数均不超过 1000 1000 1000,第 i i i 个数为第 i i i 颗珠子的头标记,当 i < N i<N i<N 时,第 i i i 颗珠子的尾标记应该等于第 i + 1 i+1 i+1 颗珠子的头标记,第 N N N 颗珠子的尾标记应该等于第 1 1 1 颗珠子的头标记。

至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

输出格式:

输出只有一行,是一个正整数 E E E ,为一个最优聚合顺序所释放的总能量。

数据范围:

4 ≤ N ≤ 100 , 1 ≤ E ≤ 2.1 × 1 0 9 4≤N≤100, 1≤E≤2.1×10^9 4N100,1E2.1×109

输入样例:

4
2 3 5 10

输出样例:

710

代码实现

与上一题的思路相同

import sys
input = sys.stdin.readline

n = int(input().strip())
nums = list(map(int, input().strip().split()))
nums = nums + nums

f = [[0 for _ in range(2 * n)] for _ in range(2 * n)]

for i in range(2 * n - 2, -1, -1):
    for j in range(i + 1, 2 * n):
        f[i][j] = max(f[i][k] + f[k + 1][j] + nums[i] * nums[j] * nums[k + 1] for k in range(i, j))

print(max(f[start][start + n - 1] for start in range(n)))

加分二叉树

题目描述:

设一个 n n n 个节点的二叉树 t r e e tree tree 的中序遍历为 ( 1 , 2 , 3 , … , n ) (1,2,3,…,n) (1,2,3,,n),其中数字 1 , 2 , 3 , … , n 1,2,3,…,n 1,2,3,,n 为节点编号。

每个节点都有一个分数(均为正整数),记第 i i i 个节点的分数为 d i d_i di t r e e tree tree 及它的每个子树都有一个加分,任一棵子树 s u b t r e e subtree subtree(也包含 t r e e tree tree 本身)的加分计算方法如下:

s u b t r e e subtree subtree 的左子树的加分 × s u b t r e e × subtree ×subtree 的右子树的加分 + s u b t r e e + subtree +subtree 的根的分数

若某个子树为空,规定其加分为 1 1 1

叶子的加分就是叶节点本身的分数,不考虑它的空子树。

试求一棵符合中序遍历为 ( 1 , 2 , 3 , … , n ) (1,2,3,…,n) (1,2,3,,n) 且加分最高的二叉树 t r e e tree tree

要求输出:

(1) t r e e tree tree 的最高加分

(2) t r e e tree tree 的前序遍历

输入格式:

1 1 1 行:一个整数 n n n ,为节点个数。

2 2 2 行: n n n 个用空格隔开的整数,为每个节点的分数( 0 0 0 < 分数 < 100 100 100 )。

输出格式:

1 1 1 行:一个整数,为最高加分(结果不会超过 i n t int int 范围)。

2 2 2 行: n n n 个用空格隔开的整数,为该树的前序遍历。如果存在多种方案,则输出字典序最小的方案。

数据范围:

n < 30 n < 30 n<30

输入样例:

5
5 7 1 2 10

输出样例:

145
3 1 2 4 5

思路

状态表示:
集合
f [ i ] [ j ] f[i][j] f[i][j] :从 i i i j j j 区间内,选一点 k k k 作为根节点,表示中序遍历是 w [ i ∼ j ] w[i∼j] w[ij] 的所有二叉树的集合。

属性
加分二叉树的 M a x Max Max 最大值

状态转移
任选节点 k k k,以 k k k 点为根构成的加分二叉树的值=它的左子树的最大加分值
× × × 右子树的最大加分值 + + + k k k点权值。
f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i ] [ k − 1 ] ∗ f [ k + 1 ] [ j ] + w [ k ] ) ( i < = k < = j ) f[i][j] = max(f[i][j], f[i][k - 1] * f[k + 1][j] + w[k]) (i <= k <= j) f[i][j]=max(f[i][j],f[i][k1]f[k+1][j]+w[k])(i<=k<=j)

注意若某个子树为空的情况,通过超出边界一些,来模拟子树为空的情况。


代码实现

import sys
input = sys.stdin.readline

n = int(input().strip())
w = list(map(int, input().strip().split()))

f = [[w[i] if i == j else 0 for j in range(n)] for i in range(n)]
path = [[i if i == j else 0 for j in range(n)] for i in range(n)]

for i in range(n - 1, -1, -1):
    for j in range(i + 1, n):
        for k in range(i, j + 1):
            ls = 1 if i == k else f[i][k - 1]
            rs = 1 if j == k else f[k + 1][j]
            val = ls * rs + w[k]
            if f[i][j] < val:
                f[i][j] = val
                path[i][j] = k


def out(l, r):
    if l > r:
        return
    print(path[l][r] + 1, end=' ')
    out(l, path[l][r] - 1)
    out(path[l][r] + 1, r)


print(f[0][-1])
out(0, n - 1)


凸多边形的划分

题目描述:

给定一个具有 N N N 个顶点的凸多边形,将顶点从 1 1 1 N N N 标号,每个顶点的权值都是一个正整数。

将这个凸多边形划分成 N − 2 N−2 N2 个互不相交的三角形,对于每个三角形,其三个顶点的权值相乘都可得到一个权值乘积,试求所有三角形的顶点权值乘积之和至少为多少。

即:求所有三角形的顶点权值乘积之和的最小值。

输入格式:

第一行包含整数 N N N,表示顶点数量。

第二行包含 N N N 个整数,依次为顶点 1 1 1 至顶点 N$ 的权值。

输出格式:

输出仅一行,为所有三角形的顶点权值乘积之和的最小值。

数据范围:

N ≤ 50 N≤50 N50,数据保证所有顶点的权值都小于 1 0 9 10^9 109

输入样例:

5
121 122 123 245 231

输出样例:

12214884

代码实现

力扣原题

import sys
input = sys.stdin.readline

n = int(input().strip())
nums = list(map(int, input().strip().split()))

f = [[0 for _ in range(n)] for _ in range(n)]

for i in range(n - 3, -1, -1):
    for j in range(i + 2, n):
        f[i][j] = min(f[i][k] + f[k][j] + nums[i] * nums[j] * nums[k] for k in range(i + 1, j))

print(f[0][-1])

棋盘分割

题目描述

将一个 8 × \times × 8 的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了 ( n − 1 ) (n-1) (n1) 次后,连同最后剩下的矩形棋盘共有 n n n 块矩形棋盘。 (每次切割都只能沿着棋盘格子的边进行)

原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成 n n n 块矩形棋盘,并使各矩形棋盘总分的均方差最小。

均方差 σ = ∑ i = 1 n ( x i − x ˉ ) 2 n \sigma = \sqrt{ \frac{ \sum_{i=1}^n (x_i - \bar x)^2 } { n }} σ=ni=1n(xixˉ)2 ,其中平均值 x ˉ = ∑ i = 1 n x i n \bar x = \frac{\sum_{i=1}^n x_i}{n} xˉ=ni=1nxi , x i x_i xi 为第 i i i 块矩形棋盘的分。

请编程对给出的棋盘及 n n n ,求出 σ \sigma σ 的最小值。

输入格式

第一行为一个整数 n n n ($ 1 < n< 15 $)。

第二行至第九行每行为 8 8 8 个小于 100 100 100 的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。

输出格式

仅一个数,为 σ \sigma σ (四舍五入精确到小数点后三位)。

样例 #1

样例输入 #1

3
1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 3

样例输出 #1

1.633

佬的题解

佬的题解


代码实现

import sys
from functools import lru_cache
sys.setrecursionlimit(10 ** 6)
input = sys.stdin.readline
from math import inf, sqrt

n, m = int(input().strip()), 8
nums = [list(map(int, input().strip().split())) for _ in range(m)]
s = [[0] * (m + 1) for _ in range(m + 1)]

for i in range(m):
    for j in range(m):
        s[i + 1][j + 1] = s[i + 1][j] + s[i][j + 1] + nums[i][j] - s[i][j]

ave = s[m][m] / n


def sum_grid(x1, y1, x2, y2):
    return (s[x2 + 1][y2 + 1] + s[x1][y1] - s[x2 + 1][y1] - s[x1][y2 + 1] - ave) ** 2


@lru_cache(maxsize=None)
def dfs(x1, y1, x2, y2, cnt):
    if cnt == n - 1:
        return sum_grid(x1, y1, x2, y2)
    res = inf

    for i in range(x1, x2):
        res = min(res, dfs(i + 1, y1, x2, y2, cnt + 1) + sum_grid(x1, y1, i, y2))
        res = min(res, dfs(x1, y1, i, y2, cnt + 1) + sum_grid(i + 1, y1, x2, y2))

    for i in range(y1, y2):
        res = min(res, dfs(x1, i + 1, x2, y2, cnt + 1) + sum_grid(x1, y1, x2, i))
        res = min(res, dfs(x1, y1, x2, i, cnt + 1) + sum_grid(x1, i + 1, x2, y2))

    return res


print("%.3f" % (round(sqrt(dfs(0, 0, 7, 7, 0) / n), 3)))
  • 11
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值