并查集——1073 家族

1073 家族

时间限制: 1 s
空间限制: 128000 KB
题目等级 : 大师 Master

  • 题目描述 Description
    若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。 规定:x和y是亲戚,y和z是亲戚,那么x和z也是亲戚。如果x,y是亲戚,那么x的亲戚都是y的亲戚,y的亲戚也都是x的亲戚。

  • 输入描述 Input Description
    第一行:三个整数n,m,p,(n<=5000,m<=5000,p<=5000),分别表示有n个人,m个亲戚关系,询问p对亲戚关系。 以下m行:每行两个数Mi,Mj,1<=Mi,Mj<=N,表示Ai和Bi具有亲戚关系。 接下来p行:每行两个数Pi,Pj,询问Pi和Pj是否具有亲戚关系。

  • 输出描述 Output Description
    P行,每行一个’Yes’或’No’。表示第i个询问的答案为“具有”或“不具有”亲戚关系。

  • 样例输入 Sample Input
    6 5 3
    1 2
    1 5
    3 4
    5 2
    1 3
    1 4
    2 3
    5 6

  • 样例输出 Sample Output
    Yes
    Yes
    No

  • 数据范围及提示 Data Size & Hint
    n<=5000,m<=5000,p<=5000

  • 分类标签 Tags
    并查集 树结构

#include<iostream>
#include<queue>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int f[1010],n,m,ans=0,d[1010];//d的引入


int find(int x){
    return (x==f[x]? x: f[x]=find(f[x]));
}

void he(int x,int y){
    f[find(x)]=find(f[y]);
}

void csh(){
    for(int i=1;i<=n;i++)
        f[i]=i;
}

void in(){
    cin>>n>>m;
    csh();
    for(int i=1;i<=m;i++)   {
        char c;
        int x,y;
        cin>>c>>x>>y;
        if(c=='F'){
            //t[x][y]=t[y][x]=1;
            he(x,y);    
            }
            else  {
                if(d[x]){
                    he(d[x],y);
                }
                    else d[x]=y;
                if(d[y]){
                    he(d[y],x);
                }
                    else d[y]=x;

            }//t[x][y]=t[y][x]=-1;
    }
} 
/*
void c(){
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++){
                if(t[i][k] && t[k][j] && i!=j ){
                    t[i][j]=1;
                    he(i,j);
                }
            }

}
*/
int main(){
    in();
    //c();
    for(int i=1;i<=n;i++)
    {
        if(f[i]==i){// i not n !!!!!!!!!
            ans++;  //cout<<f[i]<<' '<<i<<endl;
        }
    }

    cout<<ans;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值