<pre name="code" class="python"><span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);">最近刚买了一本《机器学习系统设计》的书,一方面可以学习机器学习,一方面可以练练python。今天看完了第一章,写了下代码,也发现了些问题,在此便做些笔记备忘。</span>
1.~
~是逻辑运算符,取反
<pre name="code" class="python">a = 1
sp.isnan(a)
True
~sp.isnan(a)
False
2.matplotlib.pyplot里的一些函数
2.1scatter
scatter表示画散点图,plot默认画的是连续的图
2.2xticks
xticks(locs, labels):表示用一些Label标记locs位置的数
2.3
autoscale():自适应窗口
3.polt1d
polt1d([a,b,c]): a*x^2 + b*x + c
生成函数
4.fsolve
from scipy.optimize import fsolve
fsolve(f, 20): 表示求f的根,并且是离20较近的那个根。
1.欠拟合与过拟合
2.不要把训练数据和测试数据混合在一起
3.理解和提炼数据会花费大部分精力
4.不要让一些“闪闪发光”的算法分散注意力