基于Matlab的图像增强算法的研究与实现

摘 要

为了增强图像的视觉效果,将原图像转换成一种更适合于人眼观察和计算机分析处理的形式,本文对基于Matlab的图像增强算法进行了研究与实现,包括传统图像增强方法和基于小波变换的图像增强方法,其中介绍了直方图均衡化、拉普拉斯锐化滤波、频域低通滤波以及基于小波变换的几种增强算法,利用Matlab对几种方法进行研究以及仿真对比分析,得出小波变换法在图像增强处理中相比于传统处理方法的优势。
关键词:图像增强;MATLAB;小波变换;

1引言

1.1 选题的目的及意义
数字图像处理,又称为计算机图像处理,它是指将图像信号转换成数字信号并用计算机进行处理的过程。早期的图像处理是为了改善图像质量,使人在视觉上达到很好的效果,常用的图像处理方法有图像增强复原、编码压缩、图像变换、图像分割等。图像增强是指增强图像中有用的信息,强调突出图像中的某些特征,削弱或去除一些不需要的信息,使之适用于计算机进行处理和分析,以便在人类生活和社会生产的各个方面发挥很好的作用。作为图像处理系统中非常关键的一部分,如今图像增强在各个领域都得到了广泛的应用,例如航空航天领域、军事领域、生物医学领域、工业生产领域、公共安全领域等,图像增强在其中起着越来越重要的作用,因此,为便于图像进行后续的处理进而解决一些相关工程及科学研究中的问题,本文对图像增强算法进行了研究与实现,通过对传统图像增强处理的方法和基于小波变换的图像处理方法的研究学习,以及仿真对比,得出小波变换法相比于空间域和频率域处理方法的优势。
1.2 国内外研究状况和成果
1960年代初,诞生了第一台能够处理数字图像的大型电脑,1965年以后,数码图像增强技术通过复杂的图像处理和对空间目标照片的研究进入了航天领域,并逐渐应用到人类生活的方方面面,通过对国外比较成熟的理论体系的学习和研究,强化了国内技术的发展,初始时期通过像素排列扫描图像来显示,大部分图像都是用大型机器处理的,由于图像记录和设备成本高,应用被限制,进入20世纪70年代发展阶段,许多大型机器都进入了发展阶段,图像处理也逐渐转变为网络扫描显示模式,1980年代时,随着图像增强技术进入普及阶段,电脑开始处理图像,20世纪90年代以后,图像增强开始在各方面投入应用,生物医学领域开始利用影像增强技术处理图像,如放射性图像、超声波图像和生物显微镜图像等,通过图像增强来提高图像的清晰度和分辨率。在工业生产领域,图像增强主要用于产品质量检验和自动控制转换等方面。在公共安全领域,如安全检查、人脸、指纹等多种生物特征及其他痕迹的增强处理,以及交通监控、对有雾图像、夜视红外图像、交通事故等的分析上也使用了图像增强技术。传统的图像增强方法对提高图像质量起着十分重要的作用,随着对图像增强技术的进一步研究和发展,出现了各种新的图像增强方法。小波变换是在短时傅立叶变换的基础上发展起来的一种新型的变换方法。上世纪80年代Mallet首先把小波理论应用于信号和图像的分解与重构,为小波变换用于图像处理奠定了基础,为了进一步提高图像质量,人们不断研究更好的图像增强方法,小波分析法正是一种后来兴起的能够很好的处理图像增强的方法,图像增强理论有待进一步完善,在今后一段时间内,图像增强技术仍将是一个研究热点。
1.3 研究内容
本文研究了几种传统的图像增强方法和基于小波变换的图像增强方法,传统的图像增强方法包括空间域图像增强和频率域图像增强,文中介绍了其中的直方图均衡化处理、线性锐化滤波器和频域低通滤波,并且研究了小波变换的基本理论以及在此基础上的图像增强方法,最后利用MATLAB中关于图像增强的相关工具及函数实现仿真和研究,将各个算法的进行比较,指出各自的优缺点,得到最佳的图像增强方法。

2 MATLAB简介

2.1 MATLAB概述
MATLAB是一种面向科学与工程的计算软件,是一种高效的以矩阵运算为基础的交互式程序语言。它集数值分析、符号计算、程序设计、系统建模和图形可视化与一体,功能强大、使用灵活、界面友好。目前,因其超群的风格与性能成功应用于各工程学科的研究领域,MATLAB语言是由美国MathWorks公司推出的计算机软件,MATLAB源于MatrixLaboratory一词,即矩阵实验室,最初它是一种专门用于矩阵数值计算的软件。MATLAB的语法规则非常简单,其编程特点更贴近人的思维方式。
MATLAB逐渐市场化,它已经发展成为一个功能强大的软件,可以解决科学计算的各种问题。除了常用的矩阵代数运算之外,MATLAB还有非常灵活和广泛的方式去处理数据集进行数组运算,而且也具有数据可视化功能。另一方面,MATLAB除了有强大的矩阵处理能力,还具有一种与其他高级语言相似的编程特性。经过多年的逐步发展与不断完善,MATLAB已经成为国际公认的最优秀的科学与数学应用软件之一。其内容包含了信号与系统、矩阵代数、微积分、应用数学、科学计算、数字图像处理、自动控制、电子线路、神经网络、通信技术、力学、机械振动等方面。如今MATLAB已经演变成为一种具有广泛应用前景的全新的计算机高级编程语言,其功能越来越强大,内容越来越丰富,会不断提出新的解决问题的方法。
2.2 MATLAB的优势
1、编程效率高
MATLAB是以解释方式工作的,输入算式立即可以得到结果,不需要编译,即它对每条语句解释后就立即执行,如果出现错误也可以马上做出反应,以便于编程者立即改正,并且其中提供了丰富的基本库函数,在编写程序时可以直接调用,这些都极大地减轻了编程和调试的工作量。
2、变量及运算符号的“多功能性”
(1)每个变量代表一个矩阵,它可以有个元素。
(2)矩阵行数、列数不需要定义。如果要输入一个矩阵,在用其他语言编程时必须定义矩阵的阶数,而用MATLAB语言则不必有阶数定义语句,输入数据的列数就决定了它的阶数。
(3)所有的运算,包括加、减、乘、除、函数运算都对矩阵和复数有效。
3、界面使用方便
MATLAB程序设计语言把编辑、编译、连接、执行、调试等多个步骤融为一体,并且具有良好的交互功能。使用MATLAB编程运算与人进行科学计算的思路和笔算的表达方式完全一样,其语法更贴近人的思维方式程序容易读和写,便于在科技人员之间交流。
4、强大而简易的作图功能
MATLAB可以根据输入数据自动确定坐标绘图,能绘制多种坐标(如极坐标、对数坐标等)图,能绘制三维坐标中的曲线和曲面,还可以设置不同颜色、线型、视角等,如果数据齐全,通常只需要一条命令就可出图。
5、智能化程度高
MATLAB可以在绘图时自动选择最佳坐标,在进行数值积分时自动按精度选择步长,程序调试时能自动检测错误并能提示程序错误,其智能化程度高,极大地方便了用户,提高了效率。
6、功能丰富,可扩展性强
MATLAB软件包括基本部分和专业扩展部分。基本部分包括:矩阵的运算和各种变换,代数和超越方程的求解,数据处理和傅立叶变换,数值积分等,扩展部分称为工具箱,用于解决某个方面的专门问题或某一类实际的新算法,现在已经有信号处理、控制系统、图像处理、系统辨识、模糊集合、神经元网络、小波分析等20余个工具箱,并且还在不断继续发展中。
7、语法简单,内涵丰富
与其他高级语言相比,MATLAB的语法更加简单,其基本语句结构是赋值语句。
2.3 MATLAB在图像增强处理中的应用
图像处理工具包包括一系列图像处理操作的函数。它可以进行以下图像处理操作:图像的几何操作、领域和区域操作、图像变换、图像恢复与增强、线性滤波和滤波器设计、变换(DCT变换等)、图像分析和统计、二值图像操作等。下面介绍MATLAB在图像处理中各方面的应用。
(1)图像文件格式的读写显示。MATLAB中设置了图像文件读入函数imread(),用来读取如:bmp、tif、tiffpcx、jpg、hdf、gpeg、xwd等格式图像,此外还可以用imfinfo()函数来查看图像文件的信息,图像写出函数imwrite(),还有图像显示函数image()、imshow()等等。
(2)图像处理的基本运算。MATLAB提供了图像的和、差等线性运算,以及卷积、滤波等非线性运算。
(3)图像变换。MATLAB提供了一维和二维离散傅立叶变换(DFT)、快速傅立叶变换(FFT)、离散余弦变换(DCT)及其反变换函数,以及连续小波变换(CWT)、离散小波变换(DWT)及其反变换。
(4)图像的分析和增强。针对图像的统计计算MATLAB提供了校正、直方图均衡、对比度调整、中值滤波、自适应滤波等对图像进行的处理。
上面所提到的MATLAB在图像中的应用都是由相应的MATLAB在图像中的应用都是由相应的MATLAB函数来实现的,只需要按照函数的调用语法正确输入相应的参数即可。

3 传统方法图像增强

3.1 概述
根据图像的特点,对图像进行改善或者加强特征,增强视觉效果,以便于人和机器对图像进行进一步的分析和处理,称为图像增强。一般情况下,图像增强是由于一些特定需要对一副图像中的某些信息进行处理使其明显突出,同时对不需要的信息进行削弱和消除的方法,也是提高图像质量的过程。图像增强的目的是使图像的其中一些特点更明确,使处理后的图像更便于人眼观察和机器研究,从而对图像进行进一步的处理和分析。图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,这两者的矛盾很难解决,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的。图像增强的方法可分成两大类:空间域法和频率域法。空间域增强是以灰度映射变换为基础,直接对像素进行操作和处理,而频率域增强是把图像看成一种二维信号,对其进行基于二维傅立叶变换的信号增强,是一种间接算法。
3.2 空间域增强
空域法是对原始图像直接进行数据运算,主要是对图像中的各个像素点进行处理,它可以分为点运算算法和滤波运算算法,主要包括灰度级处理、直方图处理、平滑滤波、锐化滤波等方式,本设计主要介绍了其中的直方图均衡化处理和线性锐化滤波。
3.2.1 直方图均衡化处理
图像的白色与黑色之间按照对数关系分为若干等级,我们称之为灰度。图像的直方图描述了图像中每一灰度级与其出现像素的频率间的统计关系,其横坐标表示灰度级,纵坐标是具有该灰度级的像素的个数。由于灰度级的大小为0-255,故横坐标的数值范围为0-255,直方图均衡化是指在图像处理领域中通过图像的直方图来调整对比度的方法,是一种间接性对比度增强方法,它的原理是:对一幅图像的直方图进行一定的变换,对图像中像素个数多的灰度值进行展宽,对像素个数少的灰度值进行合并,使得图像直方图的灰度值均匀或者大致均匀分布。
通过直方图均衡化变换以后,可以拉开图像的灰度间距,分布均匀,从而增大反差,使图像细节更加清晰,进而增强图像。这个方法通常用来增加图像的局部对比度,特别是当图像的有用数据对比度非常接近的时候,采用这种方法可以使亮度在直方图上更好地分布,且不会影响整体的对比度。有些图像在低值灰度区间上频率较大,使得图像中较暗区域的细节看不清楚,此时也可以通过直方图均衡化将图像的灰度范围分开,让灰度频率较小的灰度级变大。对图像进行直方图均衡化处理时,有如下离散形式:
(1)
式中,是指原始图像归一化灰度级,N是指一幅图像的所有像素数,对应灰度级出现的相对频数,为第k级灰度的像素数,运用上面的式子进行灰度转换,就能得到增强后的图像。
算法流程如下所示:
(1)列出原始图像的各个灰度级:,j=0,1,2,3,L-1,L是灰度级的个数;
(2)统计直方图中每个灰度级的像素数目 ;
(3)计算原始图像各灰度级的频数:,N为原始图像像素总个数;
(4)计算累积分布直方图:
(2)
(5)计算变换后函数的灰度级:
(3)
(6)统计处理各灰度级的像素个数;
(7)计算变换后图像的直方图;
MATLAB中用imhist函数来计算和显示图像的直方图,imhist函数只能对灰度图像画直方图,具体用法:imhist(i)意为直接显示图像i的灰度直方图,imhist(i,n)意为指定灰度级n显示图像i的直方图,而histeq函数可以实现直方图均衡化,其调用格式为:f1=histeq(f,n),其中f为输入图像,n为指定直方图均衡化后的灰度级数。如图3.2所示为原始图像的直方图和均衡化后的直方图。
在这里插入图片描述

图3.1 直方图均衡化
优点:图像均衡化前后的对比度增大,可识别度也有所提高,直方图中各灰度级的数据变得相对均衡,在每一个灰度级上都有像素点。
缺点:这种方法处理数据时无法精确操作,存在盲目性,会导致实用信息的对比度减少,造成细节的丢失。
3.2.2 图像锐化
图像锐化采用的是laplace算子提取出图像的边沿成分,通过边沿部分的叠加来增强图像细节,为了使图像边缘线、轮廓线以及图像细节更加清晰明了,采用锐化来提高图像边缘与其他部分的反差,由于图像模糊的实质就是图像受到了平均运算或者积分运算,所以可以对图像进行逆运算,如微分运算以突出图像细节使图像变得更清晰。而从频率角度来说,图像模糊的根本原因是因为其频率的高频分量衰减,可以用高通滤波器来滤除干扰从而使得图像恢复清晰,拉普拉斯算法就是微分锐化法的一种。
如图3.5展示了在MATLAB中进行图像锐化的处理结果:

在这里插入图片描述

图3.2 拉普拉斯锐化
通过比较原始模糊图像和经过拉氏算子运算的图像,可以发现,图像模糊的部分得到了锐化,特别是模糊的边缘部分得到了增强,边界更加明显。但是,图像显示清楚的地方,经过滤波发生了失真,这也是拉氏算子增强的一大缺点。
3.3 频率域增强
频域图像增强是对图像经傅立叶变换后的频谱成分进行操作,然后逆傅立叶变换获得所需结果。
频率域增强的主要步骤是:
(1)对输入的原始图像进行频域变换;
(2)对变换后图像滤波增强;
(3)再将得到的结果进行频域反变换得到增强后图像。
频域增强的重点是首先将图像从空间域转换到频率域所需的变换,然后在频域对图像进行增强的操作。
3.3.1 低通滤波
信号或图像的能量大部分集中在幅度谱的低频和中频段,而图像的边缘和噪声对应于高频部分,因此一个能降低高频成分幅度的滤波器就能减弱噪声的影响,在图像增强中构造低通滤波器,使低频分量能顺利通过,有效阻止高频分量,就可以滤除该领域内噪声。
常用的频域低通滤波器有:理想低通滤波器(Ideal Low Pass Filter,缩写为ILPF)、指数低通滤波器(Exponential Low Filter,缩写为ELPF)、巴特沃斯低通滤波器(Butterworth Low Pass Filter,缩写为BLPF),本文以巴特沃斯低通滤波器为例来说明。巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有波纹,而在阻频带则逐渐下降为零,其传递函数为
(4)
其中,表示点到原点的距离,表示频率点到原点的距离。
在这里插入图片描述

图3.6 Butterworth低通滤波

4 小波分析法图像增强

4.1 小波变换概述
小波变换是基于傅立叶变换的一种新型变换方法,它与傅立叶变换紧密联系,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随变化等缺点。小波分析的原理是把一个信号分解成由原始小波经过移位和缩放后的一系列小波,这些小波可用做一些函数的基函数,小波变换具有多分辨率分析的特点,在时域和频域都具有较强的表征信号局部特征的能力,可以自动适应时域信号和频域信号分析的要求,因此基于小波分析的图像增强和去噪技术已成为图像去噪的一个重要方法。小波(Wavelet)即存在于一个较小区域的波,小波函数的数学定义是:设为一平方可积函数,即,如果其傅立叶变换满足:
(5)
时,则称为一个基本小波或小波母函数,并称上式为小波函数的可容许条件。
根据小波函数的定义,小波函数的非零值定义域具有有限的范围,这就是“小”的特点,另一方面,根据可容许性条件可知,即直流分量为零,因此小波又具有正负交替的波动性。
将空间的任意函数在小波基下进行展开,称其为函数的连续小波变换,变换式为:
(6)
当小波的容许性条件成立时,其逆变换为:
(7)
另外,在小波变换过程中必须保持能量成比例,即:
(8)
由CWT(一维连续小波变换)的定义可知,小波变换和傅立叶变换一样,也是一种积分变化,其中为小波变换系数。可见小波变换对函数在小波基上的展开具有多分辨率的特性,这种特性正是通过缩放因子a和平移因子b来得到的。
若是一个二维函数,则它的连续小波变换是:
(9)
其中,,表示在两个维度上的平移,二维连续小波逆变换为:
(10)
同样的方法可以推广到两个或两个以上的变量函数上。
计算机中的图像信息是以离散信号形式存放的,所以需要将连续小波变换离散化。而最基本的离散化方法就是二进制离散,一般将这种经过离散化的小波及其变换叫做二进小波和二进变换。要注意的是这里的离散化都是针对连续的尺度因子a和连续平移因子b的,而不是针对时间t的,规定尺度因子a总是正数。
对连续小波基函数尺度因子a和平移因子b进行离散化可以得到离散小波变换,从而减少小波变换系数的冗余度。在离散化时通常对尺度因子a和平移因子b按幂级数进行离散化,即取(为整数,但一般都假定),得到离散小波函数为:
(11)
其对应系数为:
(12)
二进小波变换是一种特殊的离散小波变换,特别地令参数,,则有。
离散小波变换为:
(13)
离散二进小波变换为:
(14)
二维离散小波变换:
考虑二维尺度函数是可分离的情况,也就是:
(15)
设是与对应的一维小波函数,则有:
(16)
(17)
(18)
二维小波变换就是以上面三个式子为基础的。
4.2 小波变换的多尺度分析
小波变换的多尺度分析(或多分辨率分析)是建立在函数空间概念上的理论,随着尺度由大到小变化,在每个尺度上可以由粗及细地观察图像的目标。大尺度时,观察到的是图像的基本特征;在小尺度的空间里,则可以看到目标的细节。
图像是二维信号,二维多分辨率分析与一维类似,但空间变成,一维中引入的尺度函数变为。设是的一个多分辨率分析,则可以证明,张量空间:构成的一个多分辨率分析,并且二维多分辨率分析的二维尺度函数为
(19)
式中:是尺度函数(一维)。
对于每一个,函数系构成的规范正交基,这里下标j,n,m的含义是:
(20)
我们将称为的可分离多分辨率分析。因、都是低通的尺度函数,所以平滑的低通空间。
如果是一维多分辨率分析的正交小波基,则二维多分辨率分析的三个小波函数为:
(21)
对于每一个,它们的整数平移系为:
(22)
注意这里的上标只是索引而不是指数。它们构成了 的规范正交基。因此以上的三个正交基中都至少包含一个带通的 或 ,所以它们都是带通的。也就是说这三部分反应的都是细节信息。
从多分辨率分析可以看出,空间的每次剖分包含两部分:一部分是图像信号通过低通滤波后得到的低频概貌;另一部分是通过小波变换得到的图像高频细节。对于低频概貌,重复以上过程,最终把图像信号分解成多个等级的高频细节与最后一次低通滤波后的低频概貌之和。
4.3 基于小波变换的图像增强
图像增强技术中有一个难点,就是在去除噪声的同时,会造成图像细节信息的损失,从而给后续的处理及分析工作带来困难。因此如何准确分离开同在高频区域的噪声和图像细节信息就成为解决问题的关键。
由于小波变换的多分辨率分析,能够有效地抑制噪声,增强图像感兴趣部分,因而小波变换图像增强得到了广泛的应用。小波变换把图像在各个尺度上分为低频分量和水平高频,垂直高频,对角高频四个不同的分量,变换后,根据图像需要增强处理的需要,对不同位置不同方向上的某些分量改变其小波系数的大小,从而使得某些感兴趣的分量被放大而使得某些不需要的分量减小,实际应用中,通过对高频部分分量进行变换,经过处理就能达到增强图像的目的。
数字图像的小波分解实质上就是把图像信号分解成不同频带范围内的图像分量。每一层小波分解都将待分解图像分解成4个子带,很好地分离出表示图像内容的低频信息。因此,小波变换能在不同的尺度上,采用不同的方法来增强不同频率范围内图像的细节分量,再把处理后的系数进行小波重建,这样就能够在突出图像细节特征的同时,有效抑制图像噪声的影响,使图像轮廓更加突出。
4.3.1 非线性增强
具体实现步骤如下:
(1)读入原图像;
(2)对原始图像进行小波分解,得到低频子带LL和三个高频子带LH、HL、HH(细节部分);
(3)对高频系数进行非线性增强,这样达到去噪并增强的目的,其函数满足:
(23)
其中G是小波系数增强倍数,是小波系数阈值,是图像分解后的小波系数,是图像增强后小波系数;
(4)将处理后的两种小波系数进行小波逆变换,从而得出增强后的图像(输出图像)。
举例如图4.2所示。
在这里插入图片描述

图4.2 非线性小波增强
由图可知,经过非线性小波增强后,优点是图像的对比度明显增强,有效地抑制了噪声,缺点是丢失了一些细节信息。
4.3.2 图像锐化
图像锐化就是提取出图像中尖锐的部分,其目的是突出高频信息,抑制低频信息,从快速变化的成分中分离出标识系统特性或区分子系统边界的成分,以便进一步的识别、分割等操作。锐化的方法是作用掩膜或做差分,二者均很难识别点之间的关联信息。
如图4.3是采用传统的离散傅里叶变换(DCT)与小波变换锐化的对比。
在这里插入图片描述

图4.3 图像锐化
由于两种方法同样在小波系数上体现为绝对值较低的部分,故使用DCT方法进行高通滤波得到的高频结果比较纯粹,完全是原图像上的边缘信息,而使用小波方法得到的结果,不仅包含有高频成分,而且也包含了变换非常缓慢的低频成分,且DCT需做两次DCT变换,还有一次中间系数处理,而小波变换分解,重构与系数处理的复杂度均较小,时间复杂度明显少于DCT。
4.3.3 图像钝化
钝化操作主要是提取图像中的低频成分,抑制尖锐的快速变化的成分,在图像时域中的处理时,只需要把图像作用于一个平滑滤波器,使得图像中的每个点与其相邻点做平滑即可。
如图4.4举例对比分析传统的离散傅里叶变换DCT对图像钝化与小波变换对图像钝化。

图4.3 图像钝化
由图可知,采用DCT在频域滤波的方法得到的钝化结果更为平滑,这是因为其分辨率高,而小波方法得到的结果在很多地方有不连续的现象,因为对系数做放大或抑制在阈值两侧有间断,而且分解层数很低,没有完全分离出频域的信息。而且我们在做系数放大或抑制的时候,采用的标准根据系数绝对值的大小,没有完全体现出其位置信息,但是在小波系数中,我们很容易在处理系数的过程中加入位置信息。
4.3.4 小波阈值去噪
由于图像和噪声经小波变换后有不同的统计特性,图像本身的能量对应着幅值较大的小波系数,主要集中在高频;噪声能量则对应着幅值较小的小波系数,并分散在小波变换后的所有系数中。根据这一特性,设置一个阈值门限,认为大于该阈值的小波系数的主要成分为有用信号,将其收缩后保留;小于该阈值的小波系数,主要成分为噪声,将其剔除,一次达到去噪目的。
在阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数模的不同处理策略以及不同估计方法。常用的阈值函数有硬阈值函数和软阈值函数两种。硬阈值策略保留大于闽值的小波系数,而把小于阈值的小波系数都设定为零。软阈值策略把小于闽值的小波系数置零,把大于阈值的小波系数的绝对值减去阈值以除去噪声的影响。设A为元素小波系数,t为阈值,两种阈值函数的表达式分别如下:
(1)硬阈值函数:
(4.21)
(2)软阈值函数:
(4.22)
硬阈值法得到的小波系数的连续性较差,重构信号可能出现突变或振荡现象,软阈值法的到的小波系数的连续性好,但当小波系数较大时,得到的处理后的小波系数和实际的小波系数有一定的偏差,会导致重构结果的误差。
小波阈值去噪方法除了阈值函数的选取,另一个关键因素是对阈值的具体估计。如果阈值较小,去噪后的图像信号与输入比较接近,但是残留了较多噪声。若阈值较大,则得到较多为零的小波系数,对于软阈值策略重建图像变得模糊。在小波域阈值去噪中,阈值的选取直接影响滤波效果。
阈值去噪法就是通过对图像进行小波变换,得到小波变换系数。因为信号对应的小波系数包含有重要的信息,其数据较少,幅值变化较大,而噪声对应的小波系数的分布则恰好相反,通过设定特定的阈值对小波系数进行取舍,就可以得到小波系数估计值,最后通过估计小波系数进行小波重构,就得到去噪后的图像。阈值去噪法实现简单,计算量小,在实际中有着广泛的应用。经过阈值处理后,得到的处理后的小波系数多,因此可以直接对其进行小波重构。
具体步骤:
(1)图像信号的小波分解:选择一个小波和小波分解层次N,然后计算信号S到第N层的分解。
(2) 对高频系数进行阈值量化:对于从1到N的每一层,选择一个阈值,并对这一层的高频系数进行阈值量化处理。
(3) 二维小波的重构:根据小波分解的第N层的低频系数和经过修改的从第一层到第N层的各层高频系数计算二维信号的小波重构。

5 结论

本次设计主要以图像处理的理论为基础,围绕着图像增强部分进行了深入研究。首先介绍了图像增强的基本理论,概述了传统的图像增强方法及其特点,主要包括空间域图像增强中的直方图均衡化处理、拉普拉斯锐化滤波器,以及频率域图像增强中的低通滤波,并通过MATLAB图像观察可知它们均可增强图像对比度,但在增强图像的同时,图像的边缘也被增强了。
针对传统图像增强方法的不足,引出了基于小波变换的图像增强算法,在传统的小波变换增强中,我们又分析了小波非线性增强,基于小波的图像锐化,钝化以及小波变换的阈值去噪四种算法,并通过MATLAB仿真及结果分析了他们与传统DCT算法相比的优点。对比可知,基于小波变换的图像增强不仅能增强图像对比度,而且在增强图像边缘信息的同时也抑制了噪声的放大。
最后通过对比学习和研究,认识到相比于传统的空间域、频率域的图像增强,小波变换图像增强表现出明显的优势,虽然还是存在着不足的地方,但是也能够看出小波变换在图像增强领域有很好的前景,值得我们进一步学习和研究。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值