收藏关注不迷路!!
🌟文末获取源码+数据库🌟
感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
前言
Python基于大数据的微博网络舆情监控和预警系统是一个综合性的解决方案,旨在实时监控微博平台上的网络舆情,并对其进行预警和分析。以下是对该系统的详细介绍:
一、系统背景与意义
随着社交媒体的普及,微博已成为人们获取信息和表达观点的重要平台。由于用户数量庞大,信息传播速度快,微博上的舆情也成为了反映社会问题和事件的重要窗口。因此,设计和实现一个基于大数据的微博网络舆情监控和预警系统具有重要的实际意义。该系统可以为政府、企业和个人提供及时、有效的舆情监测和预警服务,帮助他们更好地了解公众的意见和情绪,从而做出更明智的决策。
详细视频演示
文章底部名片,联系我看更详细的演示视频
一、项目介绍
开发语言:Python
python框架:Django
软件版本:python3.7/python3.8
数据库:mysql 5.7或更高版本
数据库工具:Navicat11
开发软件:PyCharm/vs code
前端框架:vue.js
二、功能介绍
二、系统架构与功能
该系统通常包括以下几个核心模块:
数据采集模块:
该模块是整个系统的核心,主要负责从微博平台上收集与特定主题相关的信息。
采用爬虫技术和网页解析器,能够快速地抓取和解析微博内容。
可以利用微博API或Selenium等工具来实现数据采集。
数据预处理模块:
主要对采集到的数据进行清洗、去重和分词等操作。
清洗数据包括去除无关信息、广告、重复数据等。
分词处理可以使用jieba等中文分词工具来实现。
舆情分析模块:
该模块是系统的核心部分,主要负责对预处理后的数据进行深入分析。
采用自然语言处理技术,包括情感分析、主题分析、趋势分析等。
情感分析可以判断舆情信息的情感倾向,主题分析可以提取出舆情信息中的主要话题,趋势分析可以掌握舆情的发展趋势。
可以使用基于词典的方法或机器学习算法来实现情感分类。
可视化模块:
主要负责将舆情分析结果以图形化方式呈现给用户。
采用数据可视化技术,将分析结果转化为图表、图形等可视化形式。
可以使用Matplotlib、Seaborn、ECharts等工具来实现可视化功能。
预警模块:
主要负责监控舆情信息的变化情况,一旦发现异常情况,及时发出预警信号。
采用机器学习算法,通过训练学习模型,实现对舆情信息的自动预警。
可以设置不同的预警级别和阈值,以满足不同用户的需求。
三、核心代码
部分代码:
def users_login(request):
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
if req_dict.get('role')!=None:
del req_dict['role']
datas = users.getbyparams(users, users, req_dict)
if not datas:
msg['code'] = password_error_code
msg['msg'] = mes.password_error_code
return JsonResponse(msg)
req_dict['id'] = datas[0].get('id')
return Auth.authenticate(Auth, users, req_dict)
def users_register(request):
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
error = users.createbyreq(users, users, req_dict)
if error != None:
msg['code'] = crud_error_code
msg['msg'] = error
return JsonResponse(msg)
def users_session(request):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code,"msg":mes.normal_code, "data": {}}
req_dict = {"id": request.session.get('params').get("id")}
msg['data'] = users.getbyparams(users, users, req_dict)[0]
return JsonResponse(msg)
def users_logout(request):
if request.method in ["POST", "GET"]:
msg = {
"msg": "退出成功",
"code": 0
}
return JsonResponse(msg)
def users_page(request):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code,
"data": {"currPage": 1, "totalPage": 1, "total": 1, "pageSize": 10, "list": []}}
req_dict = request.session.get("req_dict")
tablename = request.session.get("tablename")
try:
__hasMessage__ = users.__hasMessage__
except:
__hasMessage__ = None
if __hasMessage__ and __hasMessage__ != "否":
if tablename != "users":
req_dict["userid"] = request.session.get("params").get("id")
if tablename == "users":
msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
msg['data']['pageSize'] = users.page(users, users, req_dict)
else:
msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
msg['data']['pageSize'] = [],1,0,0,10
return JsonResponse(msg)
四、效果图
五、文章目录
目 录
摘 要 1
Abstract 2
第1章 绪 论 5
1.1研究背景 5
1.2研究的目的 5
1.3国内外研究现状 6
1.4 课题研究的主要内容 6
第2章 相关技术 7
2.1 Python语言 7
2.2 Django框架 7
2.3 MySQL数据库 7
2.4 VUE技术 8
2.5 Hadoop介绍 9
2.6 推荐算法介绍 9
2.7系统运行环境 9
2.8本章小结 10
第3章 系统分析 11
3.1系统可行性分析 11
3.1.1经济可行性分析 11
3.1.2技术可行性分析 11
3.1.3操作可行性分析 11
3.2系统现状分析 12
3.3系统用例分析 12
3.4系统流程分析 14
3.5本章小结 15
第4章 系统设计 16
4.1系统功能结构设计图 16
4.2数据库设计 16
4.3本章小结 30
第5章 系统实现 31
5.1系统功能实现 31
5.1.1前台首页页面实现 31
5.1.2个人中心页面实现 32
5.2 后台模块实现 33
5.2.1管理员模块实现 33
5.2.2服务人员模块实现 38
5.3本章小结 38
第6章 系统测试 39
6.1系统测试目的 39
6.2系统功能测试 39
6.3系统测试结论 40
6.4本章小结 40
结 论 41
参考文献 42
致 谢 43
六 、源码获取
下方名片联系我即可!!
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻