收藏关注不迷路!!
🌟文末获取源码+数据库🌟
感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
前言
Python基于大数据的新闻分析推荐系统是一种利用Python编程语言及其强大的数据处理和机器学习库,结合大数据技术,对新闻内容进行分析并根据用户兴趣进行推荐的系统。以下是对该系统的详细介绍:
一、系统概述
新闻推荐系统通过分析用户的历史行为、兴趣偏好以及新闻内容等信息,向用户推荐其可能感兴趣的新闻内容。这种系统能够提升用户体验,增加用户黏性,并帮助企业提高营收和品牌形象。
详细视频演示
文章底部名片,联系我看更详细的演示视频
一、项目介绍
开发语言:Python
python框架:Django
软件版本:python3.7/python3.8
数据库:mysql 5.7或更高版本
数据库工具:Navicat11
开发软件:PyCharm/vs code
前端框架:vue.js
二、功能介绍
三、系统架构
基于大数据的新闻分析推荐系统通常采用前后端分离的开发模式,系统架构主要分为以下几个部分:
前端:使用Vue.js、React等前端框架,结合HTML、CSS等技术,实现用户界面的展示和交互。
后端:使用Spring Boot、Django等后端框架,结合数据库(如MySQL、MongoDB等)实现数据存储、处理和分析。
大数据处理:使用Hadoop、Spark等大数据处理框架,对海量新闻数据进行清洗、转换和存储。
推荐算法:基于用户行为数据和新闻内容数据,实现推荐算法,如基于内容的推荐、基于协同过滤的推荐、基于深度学习的推荐等。
四、推荐算法
基于内容的推荐:根据新闻的标题、关键词、摘要等信息,计算新闻之间的相似度,推荐与用户历史兴趣相似的新闻。这种算法简单直观,但可能受限于新闻内容的表示和相似度计算的方法。
基于协同过滤的推荐:根据用户的历史行为数据,计算用户之间的相似度或新闻之间的相似度,然后基于相似用户的兴趣或相似新闻的内容进行推荐。这种算法能够挖掘用户的潜在兴趣,但可能面临冷启动问题和稀疏性问题。
基于深度学习的推荐:利用深度神经网络(如卷积神经网络CNN、循环神经网络RNN等)对用户行为数据和新闻内容数据进行特征提取和表示学习,然后基于特征向量构建深度学习模型进行推荐。这种算法能够自动学习用户和新闻的特征表示,提高推荐的准确性和个性化程度。
三、核心代码
部分代码:
def users_login(request):
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
if req_dict.get('role')!=None:
del req_dict['role']
datas = users.getbyparams(users, users, req_dict)
if not datas:
msg['code'] = password_error_code
msg['msg'] = mes.password_error_code
return JsonResponse(msg)
req_dict['id'] = datas[0].get('id')
return Auth.authenticate(Auth, users, req_dict)
def users_register(request):
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
error = users.createbyreq(users, users, req_dict)
if error != None:
msg['code'] = crud_error_code
msg['msg'] = error
return JsonResponse(msg)
def users_session(request):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code,"msg":mes.normal_code, "data": {}}
req_dict = {"id": request.session.get('params').get("id")}
msg['data'] = users.getbyparams(users, users, req_dict)[0]
return JsonResponse(msg)
def users_logout(request):
if request.method in ["POST", "GET"]:
msg = {
"msg": "退出成功",
"code": 0
}
return JsonResponse(msg)
def users_page(request):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code,
"data": {"currPage": 1, "totalPage": 1, "total": 1, "pageSize": 10, "list": []}}
req_dict = request.session.get("req_dict")
tablename = request.session.get("tablename")
try:
__hasMessage__ = users.__hasMessage__
except:
__hasMessage__ = None
if __hasMessage__ and __hasMessage__ != "否":
if tablename != "users":
req_dict["userid"] = request.session.get("params").get("id")
if tablename == "users":
msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
msg['data']['pageSize'] = users.page(users, users, req_dict)
else:
msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
msg['data']['pageSize'] = [],1,0,0,10
return JsonResponse(msg)
四、效果图
五、文章目录
目 录
摘 要 1
Abstract 2
第1章 绪 论 5
1.1研究背景 5
1.2研究的目的 5
1.3国内外研究现状 6
1.4 课题研究的主要内容 6
第2章 相关技术 7
2.1 Python语言 7
2.2 Django框架 7
2.3 MySQL数据库 7
2.4 VUE技术 8
2.5 Hadoop介绍 9
2.6 推荐算法介绍 9
2.7系统运行环境 9
2.8本章小结 10
第3章 系统分析 11
3.1系统可行性分析 11
3.1.1经济可行性分析 11
3.1.2技术可行性分析 11
3.1.3操作可行性分析 11
3.2系统现状分析 12
3.3系统用例分析 12
3.4系统流程分析 14
3.5本章小结 15
第4章 系统设计 16
4.1系统功能结构设计图 16
4.2数据库设计 16
4.3本章小结 30
第5章 系统实现 31
5.1系统功能实现 31
5.1.1前台首页页面实现 31
5.1.2个人中心页面实现 32
5.2 后台模块实现 33
5.2.1管理员模块实现 33
5.2.2服务人员模块实现 38
5.3本章小结 38
第6章 系统测试 39
6.1系统测试目的 39
6.2系统功能测试 39
6.3系统测试结论 40
6.4本章小结 40
结 论 41
参考文献 42
致 谢 43
六 、源码获取
下方名片联系我即可!!
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻