收藏关注不迷路!!
🌟文末获取源码+数据库🌟
感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
前言
基于Python的民宿评论满意度文本挖掘的分析与推荐系统是一个综合性的解决方案,旨在通过分析民宿的在线评论来提取用户的满意度信息,并据此为用户提供个性化的推荐。以下是对该系统的详细介绍:
一、系统背景与意义
随着在线旅游平台的兴起,民宿作为一种新型的住宿方式受到了广大游客的青睐。然而,随着民宿数量的快速增长,用户在选择民宿时面临着越来越多的选择困难。同时,民宿经营者也需要了解用户的反馈和满意度来改进服务。因此,开发一个基于Python的民宿评论满意度文本挖掘的分析与推荐系统具有重要的现实意义。
详细视频演示
文章底部名片,联系我看更详细的演示视频
一、项目介绍
开发语言:Python
python框架:Django
软件版本:python3.7/python3.8
数据库:mysql 5.7或更高版本
数据库工具:Navicat11
开发软件:PyCharm/vs code
前端框架:vue.js
二、功能介绍
系统架构:
数据采集层:利用Python爬虫技术从各大在线旅游平台(如美团、携程等)收集民宿的评论数据,包括评论内容、评分、用户信息等。
数据处理层:对收集到的评论数据进行清洗、去重、分词、词性标注等预处理操作,以提高后续分析的准确性。
文本挖掘层:利用自然语言处理(NLP)技术,如情感分析、主题提取等,对评论数据进行深入分析,提取用户的满意度信息。
推荐算法层:根据用户的满意度信息和历史行为,利用推荐算法生成个性化的民宿推荐结果。
用户交互层:构建用户界面,实现与用户的交互,展示推荐结果和满意度分析结果。
技术栈:
编程语言:Python,因其语法简洁、易于上手,且拥有庞大的开发者社区和丰富的第三方库,非常适合用于数据分析和文本挖掘。
数据处理:Pandas、NumPy等库,用于数据的清洗、去重、转换等操作。
文本挖掘:jieba分词、NLTK、TextBlob等库,用于中文分词、情感分析、主题提取等任务。
推荐算法:协同过滤、基于内容的过滤等算法,用于生成个性化的推荐结果。
Web开发框架:Django、Flask等框架,用于构建用户界面和实现与用户的交互。
三、核心代码
部分代码:
def users_login(request):
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
if req_dict.get('role')!=None:
del req_dict['role']
datas = users.getbyparams(users, users, req_dict)
if not datas:
msg['code'] = password_error_code
msg['msg'] = mes.password_error_code
return JsonResponse(msg)
req_dict['id'] = datas[0].get('id')
return Auth.authenticate(Auth, users, req_dict)
def users_register(request):
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
error = users.createbyreq(users, users, req_dict)
if error != None:
msg['code'] = crud_error_code
msg['msg'] = error
return JsonResponse(msg)
def users_session(request):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code,"msg":mes.normal_code, "data": {}}
req_dict = {"id": request.session.get('params').get("id")}
msg['data'] = users.getbyparams(users, users, req_dict)[0]
return JsonResponse(msg)
def users_logout(request):
if request.method in ["POST", "GET"]:
msg = {
"msg": "退出成功",
"code": 0
}
return JsonResponse(msg)
def users_page(request):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code,
"data": {"currPage": 1, "totalPage": 1, "total": 1, "pageSize": 10, "list": []}}
req_dict = request.session.get("req_dict")
tablename = request.session.get("tablename")
try:
__hasMessage__ = users.__hasMessage__
except:
__hasMessage__ = None
if __hasMessage__ and __hasMessage__ != "否":
if tablename != "users":
req_dict["userid"] = request.session.get("params").get("id")
if tablename == "users":
msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
msg['data']['pageSize'] = users.page(users, users, req_dict)
else:
msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
msg['data']['pageSize'] = [],1,0,0,10
return JsonResponse(msg)
四、效果图
五、文章目录
目 录
摘 要 1
Abstract 2
第1章 绪 论 5
1.1研究背景 5
1.2研究的目的 5
1.3国内外研究现状 6
1.4 课题研究的主要内容 6
第2章 相关技术 7
2.1 Python语言 7
2.2 Django框架 7
2.3 MySQL数据库 7
2.4 VUE技术 8
2.5 Hadoop介绍 9
2.6 推荐算法介绍 9
2.7系统运行环境 9
2.8本章小结 10
第3章 系统分析 11
3.1系统可行性分析 11
3.1.1经济可行性分析 11
3.1.2技术可行性分析 11
3.1.3操作可行性分析 11
3.2系统现状分析 12
3.3系统用例分析 12
3.4系统流程分析 14
3.5本章小结 15
第4章 系统设计 16
4.1系统功能结构设计图 16
4.2数据库设计 16
4.3本章小结 30
第5章 系统实现 31
5.1系统功能实现 31
5.1.1前台首页页面实现 31
5.1.2个人中心页面实现 32
5.2 后台模块实现 33
5.2.1管理员模块实现 33
5.2.2服务人员模块实现 38
5.3本章小结 38
第6章 系统测试 39
6.1系统测试目的 39
6.2系统功能测试 39
6.3系统测试结论 40
6.4本章小结 40
结 论 41
参考文献 42
致 谢 43
六 、源码获取
下方名片联系我即可!!
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻