活体检测技术
应用场景
金融支付,门禁,打卡机等应用场景。任务目标为判断捕捉到的人脸是真实人脸,还是伪造的人脸攻击。任务难点主要是:
- 攻击源分布过于广泛
- 不同攻击源之间差距不明显
- 使用场景限制检测方法
- 当前开放样本数据不足
2019世界黑帽安全大会,腾讯公司演示了攻破苹果Face ID。
工具为:一款特制眼镜,眼镜镜片上贴有黑色胶带,黑色胶带中心还贴有白色胶带。《福布斯》的记者们决定使用 3D 打印石膏人脸攻击手机的人脸识别功能。 在一通测试之后,他们发现石膏人脸竟可以破解当时四种流行旗舰手机(LG G7 ThinQ、三星 S9、三星 Note 8 和一加 6)的 AI 人脸识别解锁功能。
发展路线
1 攻击方式的发展
2辅助硬件的发展
近红外活体检测:利用近红外成像原理,实现夜间或无自然光条件下的活体判断。其成像特点(如屏幕无法成像,不同材质反射率不同等)可以实现高鲁棒性的活体判断。
3D结构光活体检测:基于3D结构光成像原理,通过人脸表面反射光线构建深度图像