活体检测技术

活体检测技术广泛应用于金融支付、门禁等领域,以鉴别真实人脸与伪造攻击。随着攻击手段升级,检测技术也在不断发展,包括近红外、3D结构光等方案。文章介绍了基于描述子和分类器的分析方法,并探讨了DeepLearning在活体检测中的应用,如噪声建模、时序信息利用等,以提升检测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

活体检测技术

应用场景

金融支付,门禁,打卡机等应用场景。任务目标为判断捕捉到的人脸是真实人脸,还是伪造的人脸攻击。任务难点主要是:

  • 攻击源分布过于广泛
  • 不同攻击源之间差距不明显
  • 使用场景限制检测方法
  • 当前开放样本数据不足
    在这里插入图片描述
    2019世界黑帽安全大会,腾讯公司演示了攻破苹果Face ID。
    工具为:一款特制眼镜,眼镜镜片上贴有黑色胶带,黑色胶带中心还贴有白色胶带。《福布斯》的记者们决定使用 3D 打印石膏人脸攻击手机的人脸识别功能。 在一通测试之后,他们发现石膏人脸竟可以破解当时四种流行旗舰手机(LG G7 ThinQ、三星 S9、三星 Note 8 和一加 6)的 AI 人脸识别解锁功能。

发展路线

1 攻击方式的发展

在这里插入图片描述

2辅助硬件的发展

近红外活体检测:利用近红外成像原理,实现夜间或无自然光条件下的活体判断。其成像特点(如屏幕无法成像,不同材质反射率不同等)可以实现高鲁棒性的活体判断。

3D结构光活体检测:基于3D结构光成像原理,通过人脸表面反射光线构建深度图像࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值