斐波那契数列是数学中的一个经典数列,以其独特的递归性质而闻名。
数列的前两项通常是0和1(或者有时从1开始,当然这个不是强制要求),之后的每一项都是前两项的和。数列的前几项如下所示:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ......
斐波那契数列在自然界、艺术、建筑以及金融领域都有广泛的体现和应用,它还与黄金分割比例有关联。
我们可以用按照这个规律来实现斐波那契数列的计算——步骤:
-
初始化:
确定迭代的起始条件。对于斐波那契数列,前两项分别为F(0)=0和F(1)=1,所以需要初始化两个变量,分别代表当前项和前一项。 -
设定循环:
设定一个循环结构,从初始状态开始,逐步向目标状态推进。对于求解第n项,循环的次数应当是从2到n。 -
更新状态:
在每一次循环中,根据当前的状态计算新的状态。对于斐波那契数列,就是将前两项相加得到当前项。更新变量,将当前项赋值给前一项,将新计算出的当前项赋值给当前项变量。 -
终止条件:
循环应该有一个明确的终止条件。对于求解第n项,当循环计数器达到n时,循环结束。 -
返回结果:
当循环结束后,最后一个计算出的当前项即为所求的斐波那契数列的第n项。
#include <iostream>
using namespace std;
unsigned