背包问题之完全背包问题

问题描述:有n个物品,第 i 个物品的重量与价值分别为 w [ i ] w[i] w[i] v [ i ] v[i] v[i]。背包容量为 V,试问在每个物品有无限个(物品必须保持完整)的情况下,如何让背包装入的物品具有更大的价值总和。现有数据如下:

w = [2,3,4,5];
v = [3,4,5,6];
V = 10;

解题思路:令 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示从编号 1~i 的物品中挑选任意数量的任意物品放入容量为 j 的背包中得到的最大价值,那么有 d p [ i ] [ j ] = m a x { d p [ i − 1 ] [ j − k ∗ w [ i ] ] + k ∗ v [ i ] ∣ 0 ≤ k & k ∗ w [ i ] ≤ j } dp[i][j]=max\{dp[i-1][j-k*w[i]]+k*v[i]|0 \le k\&k*w[i] \le j\} dp[i][j]=max{dp[i1][jkw[i]]+kv[i]0k&kw[i]j}。根据题意,在背包容量不变的情况下,若增加一件物品仍然无法改变背包内的物品,那么最大价值仍然为 d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j],即 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] dp[i][j]= dp[i-1][j] dp[i][j]=dp[i1][j]。因此有 d p [ i ] [ j ] = m a x { d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − k ∗ w [ i ] ] + k ∗ v [ i ] ∣ 0 ≤ k & k ∗ w [ i ] ≤ j } dp[i][j]=max\{dp[i-1][j],dp[i-1][j-k*w[i]]+k*v[i]|0 \le k \&k*w[i] \le j\} dp[i][j]=max{dp[i1][j],dp[i1][jkw[i]]+kv[i]0k&kw[i]j}

    public int knapsackProblem(int[] w, int[] v, int cap) {
        int[][] dp = new int[w.length + 1][cap + 1];
        for (int i = 1; i <= w.length; i++) {
            for (int j = cap; j > 0; j--) {
                dp[i][j] = dp[i - 1][j];
                for (int k = 0; k * w[i - 1] <= j; k++) {
                    dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - k * w[i - 1]] + k * v[i - 1]);
                }
            }
        }
        return dp[w.length][cap];
    }

由以上代码可知,时间复杂度为 O ( n V 2 ) O(nV^2) O(nV2)

时间优化

d p [ i ] [ j ] = m a x { d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − k ∗ w [ i ] ] + k ∗ v [ i ] ∣ 0 ≤ k & k ∗ w [ i ] ≤ j } dp[i][j]=max\{dp[i-1][j],dp[i-1][j-k*w[i]]+k*v[i]|0 \le k\&k*w[i] \le j\} dp[i][j]=max{dp[i1][j],dp[i1][jkw[i]]+kv[i]0k&kw[i]j}

d p [ i ] [ j ] = m a x { d p [ i − 1 ] [ j ] , m a x { d p [ i − 1 ] [ ( j − w [ i ] ) − ( k − 1 ) ∗ w [ i ] ] + ( k − 1 ) ∗ v [ i ] ∣ 0 ≤ ( k − 1 ) ∗ w [ i ] ≤ j } + v [ i ] } dp[i][j]=max\{dp[i-1][j], max\{dp[i-1][(j-w[i])-(k-1)*w[i]]+(k-1)*v[i]|0 \le (k-1)*w[i] \le j\} + v[i]\} dp[i][j]=max{dp[i1][j],max{dp[i1][(jw[i])(k1)w[i]]+(k1)v[i]0(k1)w[i]j}+v[i]}

d p [ i ] [ j ] = m a x { d p [ i − 1 ] [ j ] , m a x { d p [ i − 1 ] [ ( j − w [ i ] ) − k ∗ w [ i ] ] + k ∗ v [ i ] ∣ 0 ≤ k & ( k + 1 ) ∗ w [ i ] ≤ j } + v [ i ] } dp[i][j]=max\{dp[i-1][j], max\{dp[i-1][(j-w[i])-k*w[i]]+k*v[i]|0 \le k \& (k+1)*w[i] \le j\}+v[i]\} dp[i][j]=max{dp[i1][j],max{dp[i1][(jw[i])kw[i]]+kv[i]0k&(k+1)w[i]j}+v[i]}

纵观上述表达式的第二项,有

d p [ i ] [ j − w [ i ] ] = m a x { d p [ i − 1 ] [ ( j − w [ i ] ) − k ∗ w [ i ] ] + k ∗ v [ i ] ∣ 0 ≤ k & ( k + 1 ) ∗ v [ i ] ≤ j } dp[i][j-w[i]]=max\{dp[i-1][(j-w[i])-k*w[i]]+k*v[i]|0 \le k \& (k+1)*v[i] \le j\} dp[i][jw[i]]=max{dp[i1][(jw[i])kw[i]]+kv[i]0k&(k+1)v[i]j}

进而 d p [ i ] [ j ] = m a x { d p [ i − 1 ] [ j ] , d p [ i ] [ j − w [ i ] ] + v [ i ] } dp[i][j]=max\{dp[i-1][j], dp[i][j-w[i]]+v[i]\} dp[i][j]=max{dp[i1][j],dp[i][jw[i]]+v[i]}

空间优化

d p [ i ] [ j ] = m a x { d p [ i − 1 ] [ j ] , d p [ i ] [ j − w [ i ] ] + v [ i ] } dp[i][j]=max\{dp[i-1][j], dp[i][j-w[i]]+v[i]\} dp[i][j]=max{dp[i1][j],dp[i][jw[i]]+v[i]} => d p [ j ] = m a x { d p [ j ] , d p [ j − w [ i ] ] + v [ i ] } , j = 1 , 2 , . . . c a p dp[j]=max\{dp[j], dp[j-w[i]]+v[i]\}, j=1,2,...cap dp[j]=max{dp[j],dp[jw[i]]+v[i]},j=1,2,...cap

    public int knapsackProblem(int[] w, int[] v, int cap) {
        int[] dp = new int[cap + 1];
        for (int i = 0; i < w.length; i++) {
            for (int j = 1; j <= cap; j++) {
                if (w[i] <= j) {
                    dp[j] = Math.max(dp[j], dp[j - w[i]] + v[i]);
                }
            }
        }
        return dp[cap];
    }

时间复杂度为 O ( n V ) O(nV) O(nV)


上一篇:背包问题之0-1背包问题
下一篇:背包问题之多重背包问题

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值