背包问题之多重背包问题

问题描述:有n个物品,第 i 个物品的重量与价值分别为 w [ i ] w[i] w[i] v [ i ] v[i] v[i]且第 i 种物品最多有 p[i] 件。背包容量为 V,试问在每个物品不超过其上限的件数(物品必须保持完整)的情况下,如何让背包装入的物品具有更大的价值总和。现有数据如下:

w = [2,3,4,5];
v = [3,4,5,6];
p = [1,1,1,1];	// 结果与0-1背包一样。
V = 8;

解题思路:令 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示从编号 1~i 的物品中挑选任意数量的任意物品放入容量为 j 的背包中得到的最大价值,那么有 d p [ i ] [ j ] = m a x { d p [ i − 1 ] [ j − k ∗ w [ i ] ] + k ∗ v [ i ] ∣ 0 ≤ k ≤ p [ i ] & k ∗ w [ i ] ≤ j } dp[i][j]=max\{dp[i-1][j-k*w[i]]+k*v[i]|0 \le k \le p[i] \& k*w[i] \le j\} dp[i][j]=max{dp[i1][jkw[i]]+kv[i]0kp[i]&kw[i]j}

    public int knapsackProblem(int[] w, int[] v, int[] p, int cap) {
        int[][] dp = new int[w.length + 1][cap + 1];
        for (int i = 1; i <= w.length; i++) {
            for (int j = 1; j <= cap; j++) {
                for (int k = 0; k <= p[i - 1] && k * w[i - 1] <= j; k++) {
                    dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - k * w[i - 1]] + k * v[i - 1]);
                }
            }
        }
        return dp[w.length][cap];
    }

时间复杂度为 O ( n V ∑ p [ i ] ) O(nV \sum p[i]) O(nVp[i]),略高。

时间优化:将该问题转换为0-1背包问题,即若第 i 种物品有 s 件,那么可以将其分成 s 份”不同“的物品。但是略复杂。

二进制优化法:若要表示1~s之内的任意一个数字,只需要 l o g 2 ( s ) log_2(s) log2(s) 向上取整个数即可完全表示,分别取 1 , 2 , 4 , ⋯   , 2 l o g 2 ( x ) 1,2,4,\cdots, 2^{log_{2}(x)} 1,2,4,,2log2(x) 个数,若最有一个数不足 2 l o g 2 ( x ) 2^{log_{2}(x)} 2log2(x),则取 s − 1 − 2 − 4 − ⋯ s-1-2-4-\cdots s124。即十进制数10可以用4个数表示,分别是1,2,4,3。前三个数最大能表示的数是7。故剩下一个数取10-7=3。此时原问题就转换为0-1背包问题了。

    public int knapsackProblem(int[] w, int[] v, int[] p, int cap) {
        int[] dp = new int[cap + 1];
        for (int i = 0; i < w.length; i++) {
            int s = p[i];
            for (int j = 1; j <= s; s -= j, j <<= 1) {
                for (int k = cap; k >= 0 && k >= j * w[i]; k--) {
                    dp[k] = Math.max(dp[k], dp[k - j * w[i]] + j * v[i]);
                }
            }
            if (s > 0) {
                for (int j = cap; j >= s * w[i]; j--) {
                    dp[j] = Math.max(dp[j], dp[j - s * w[i]] + s * v[i]);
                }
            }
        }
        return dp[cap];
    }

时间复杂度为 O ( n V ∑ l o g 2 ( p [ i ] ) ) O(nV\sum log_{2}(p[i])) O(nVlog2(p[i]))


上一篇:背包问题之完全背包问题
下一篇:背包问题之混合背包问题

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
多重背包问题是一个经典的动态规划问题,它的目标是在给定的一组物品中选择一些物品,使得它们的总体积和不超过背包的容量,同时最大化它们的总价值。与 0-1 背包问题不同的是,多重背包问题允许每物品被选择多次,而不仅仅是一次。 在 MATLAB 中,可以使用动态规划的方法来解决多重背包问题。具体实现步骤如下: 1. 定义状态:设 dp(i,j) 表示前 i 物品,总体积不超过 j 的情况下,可以获得的最大价值。 2. 状态转移方程:对于第 i 物品,可以选择 0 到 k(i) 个,其中 k(i) 表示第 i 物品的可选数量。因此,dp(i,j) 可以由以下两情况转移而来: a. 不选择第 i 物品:dp(i,j) = dp(i-1,j) b. 选择第 i 物品 k 个,此时总体积不超过 j:dp(i,j) = max(dp(i,j), dp(i-1,j-k*v(i))+k*w(i)) 其中,v(i) 表示第 i 物品的体积,w(i) 表示第 i 物品价值。 3. 初始状态:dp(0,j) = 0,dp(i,0) = 0。 4. 最终结果:dp(n,m),其中 n 表示物品的数量,m 表示背包的容量。 使用 MATLAB 实现多重背包问题的代码可以参考如下: ```matlab function [maxValue] = multipleKnapsack(n, m, v, w, k) % n: 物品数量,m: 背包容量,v: 物品体积,w: 物品价值,k: 可选数量 dp = zeros(m+1,1); for i = 1:n for j = m:-1:0 for t = 0:min(k(i),floor(j/v(i))) dp(j+1) = max(dp(j+1), dp(j-t*v(i)+1)+t*w(i)); end end end maxValue = dp(m+1); end ``` 其中,n、m、v、w、k 分别表示物品的数量、背包的容量、物品的体积、物品价值物品的可选数量。函数返回值为最大的总价值 maxValue。 注意:本代码仅供参考,请根据实际情况进行调整和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值