自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

yyy'sblog

今天不学习,明天变垃圾

  • 博客(8)
  • 收藏
  • 关注

原创 推荐系统-召回-向量召回

1. 离散特征步骤:建立字典:把类别映射成序号向量化:把序号映射成向量a. one-hot 编码:把序号映射成高纬稀疏向量b. embedding:把序号映射成低维稠密向量one-hot 编码 embedding2.矩阵补充模型 matrix completion每次更新矩阵a和b的一列,学出矩阵a和b每一列是一个物品每一行是一个用户用绿色位置训练模型,预估出灰色位置的分数,也就是把矩阵元素补全补全之后可以做推荐,把较高的物品推荐给用户

2022-05-10 05:51:25 634

原创 推荐系统2-召回1usercf

说明:笔记记录来自B站大佬的视频大佬主页:https://space.bilibili.com/1369507485?spm_id_from=333.788.b_765f7570696e666f.1up主:shusenwang视频链接:https://www.bilibili.com/video/BV1mA4y1Q7RN/?spm_id_from=333.788.recommend_more_video.1基于物品的协同过滤(item CF)原理a. 知识图谱,两个书的作者相同b. 用户行为,

2022-05-10 04:54:45 295

原创 推荐系统1-基本概念

说明:笔记记录来自B站大佬的视频大佬主页:https://space.bilibili.com/1369507485?spm_id_from=333.788.b_765f7570696e666f.1up主:shusenwang1. 小红书推荐系统转化流程:2. 消费指标点击率越高:推荐越精准f(笔记长度):归一化函数推荐越符合用户兴趣,点赞收藏转发会越多多样性:不能一味追求用户段时间内的兴趣3. 衡量推荐系统好坏:北极星指标(最重要的指标)a. 用户规模DAU:一天内不管

2022-05-10 04:21:03 301

原创 1.链表问题:链表增删改查+快慢指针

1)定义链表节点//Listnode含有三种初始化列表(无参,单参,双参)struct ListNode{ int val; ListNode* next; ListNode():val(0),next(nullptr){} ListNode(int x) :val(x), next(nullptr) {} ListNode(int x,ListNode * next):val(x),next(next){}};2)链表增删改查class MyLinked

2022-03-06 12:06:51 585

原创 Unsupervised learning of digit recognition using spike-timing-dependent plasticity

2.Methods为了模拟我们的SNN,我们使用了Python和BRIAN模拟器。在这里,我们描述单个神经元和单个突触的动力学,然后描述网络体系结构和使用的机制,最后我们解释MNIST的训练和分类过程。2.1 神经元和突触模型为了建模沈金元动力学模型,我们选择LIF模型。其膜电位V描述如下::静息膜电位:兴奋性突触的平衡电位:抑制性突触的平衡电位:兴奋性突触的电导:抑制性突触的电导:时间常数正如在生物学中观察到的,我们使用时间常数τ,对于兴奋性神经元而言,其.

2020-09-27 08:58:28 2389 13

原创 Real-World Super-Resolution via Kernel Estimation and Noise Injection ---2020.08.10

介绍:2020 cvpr real world SR challenge NO.1内容:论文翻译+实验细节摘要: 不管blur和noise如何,最新的超分辨率方法在理想数据集上均具有出色的性能。但是,这些方法在现实世界中的图像超分辨率中始终会失败,因为它们大多数都从高质量图像采用简单的bicubic降采样来构造低分辨率(LR)和高分辨率(HR)对进行训练,这可能会丢失与频率相关的轨迹细节。为了解决这个问题,我们专注于通过估计各种模糊内核以及真实的噪声分布,为现实世界的图像设...

2020-08-10 10:32:14 1905

原创 sPyNNaker: A Software Package for Running PyNN Simulations on SpiNNaker

摘要:这项工作介绍了sPyNNaker 4.0.0,这是用于在SpiNNaker神经形态平台上模拟PyNN定义的尖刺神经网络(SNN)的软件包的最新版本。提出了支持实时SNN执行的操作,包括一个基于事件的操作系统,该系统有助于高效的时间驱动神经元状态更新和pipelined event-driven spike processing。 讨论了预处理,实时执行和神经元/突触模型的实现,所有这些都在一个简单的示例SNN的上下文中进行。 演示了仿真结果以及性能分析,可深入了解软件如何与底层硬件交互以实

2020-06-30 14:10:57 567

翻译 Feedback Network for Image Super-Resolution(SRFBN)---翻译

attention :只详细翻译了重点部分摘要图像超分辨率(SR)的最新进展展现了深度学习的力量,可以实现更好的重建性能。然而,现有的基于深度学习的图像SR方法尚未充分利用人类视觉系统中常见的反馈机制。在本文中,我们提出了一个图像超分辨率反馈网络(SRFBN)来改进具有高级信息的低级表示。具体而言,我们在具有约束的RNN中使用隐藏状态来实现这种反馈方式。反馈模块旨在处理反馈连接并生成强大的高级...

2019-04-14 12:56:23 1810

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除