spark-rdd-api

RDD[T]
Transformations

persist/cache 缓存rdd(存储级别的不同 disk,disk-and-mem,mem )

map(f: T => U) 转换

keyBy(f: T => K) 特殊的map,提key作用于key-value
数据

flatMap(f: T => Iterable[U]) Flatmap可以理解为展开,如果rdd的一条记录是一个collection,可以把collection的数据放在rdd里面作为一条记录

filter(f: T => Boolean) 过滤可以传入返回布尔值的匿名函数等

distinct(numPartitions) rdd的实现为 map(x => (x, null)).reduceByKey((x, y) => x, numPartitions).map(_._1) reduceByKey是特殊的combineByKey,其mergeValue函数和mergeCombiners函数一致,会触发shuffle

repartition(numPartitions)/coalesce(numPartitions) repartition用于增减rdd分区。coalesce特指减少分区,可以通过一次窄依赖的映射避免shuffle;
Repartition是coalesce shuffle为true的简易实现

sample()/randomSplit()/takeSample() 采样

union(RDD[T]) 不去重。使用distinct()去重

sortBy[K](f: (T) => K) 传入的f是提key函数,rdd的实现为 keyBy(f).sortByKey().values() 这次操作为RDD设置了一个RangePartitioner

intersection(RDD[T]) 两个集合取交集,并去重。RDD的实现为 map(v => (v, null)).cogroup(other.map(v => (v, null))).filter(两边都空).keys() cogroup是生成K, List[V], List[V]的形态,这个过程可能内含一次shuffle操作,为了两边RDD的分区对齐

glom():RDD[Array[T]] 把每个分区的数据合并成一个Array。原本每个分区是T的迭代器。
cartesian(RDD[U]): RDD[(T, U)] 求两个集合的笛卡尔积。RDD的做法是两个RDD内循环、外循环yield出每对(x, y)

groupBy[K](f: T => K): RDD[(K, Iterable[T])] RDD建议如果后续跟agg的话,直接使用aggregateByKey或reduceByKey更省时,这两个操作本质上就是combineByKey
在map段没做聚合

mapPartitions(f: Iterator[T] => Iterator[U])/mapPartitionsWithIndex(f: (Int, Iterator[T]) => Iterator[U]) RDD的每个分区做map变换,对于map的不同的是,map作用于rdd的每一条记录;
mapPartitions作用于rdd的每个分区

zip(RDD[U]): RDD[(T, U)] 两个RDD分区数目一致,且每个分区数据条数一致
拉链操作

Actions

foreach(f: T => Unit) rdd实现为调用sc.runJob(),把f作用于每个分区的每条记录

foreachPartition(f: ItIerator[T] => Unit) rdd实现为调用sc.runJob(),把f作用于每个分区

collect(): Array[T] rdd实现为调用sc.runJob(),得到results,把多个result的array合并成一个array;
会将结果拉到driver端,如果数据量比较大的话,慎重使用

toLocalIterator() 把所有数据以迭代器返回,rdd实现是调用sc.runJob(),每个分区迭代器转array,收集到driver端再flatMap一次打散成大迭代器。理解为一种比较特殊的driver端cache

collect[U](f: PartailFunction[T, U]): RDD[U] rdd实现为filter(f.isDefinedAt).map(f) 先做一次filter找出满足的数据,然后一次map操作执行这个偏函数。

subtract(RDD[T]) rdd实现为map(x => (x, null)).subtractByKey(other.map((_, null)), p2).keys 与差集类似

reduce(f: (T, T) => T) rdd实现为调用sc.runJob(),让f在rdd每个分区计算一次,最后汇总merge的时候再计算一次。

treeReduce(f: (T, T) => T, depth = 2) 见treeAggregate

fold(zeroValue: T)(op: (T, T) => T) 特殊的reduce,带初始值,函数式语义的fold
aggregate(zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U) 带初始值、reduce聚合、merge聚合三个完整条件的聚合方法。rdd的做法是把函数传入分区里去做计算,最后汇总各分区的结果再一次combOp计算。

treeAggregate(zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U)(depth = 2) 在分区处,做两次及以上的merge聚合,即每个分区的merge计算可能也会带shuffle。其余部分同aggregate。理解为更复杂的多阶aggregate

count() rdd实现为调用sc.runJob(),把每个分区的size汇总在driver端再sum一次

countApprox(timeout, confidence) 提交个体DAGScheduler特殊的任务,生成特殊的任务监听者,在timeout时间内返回,没计算完的话返回一个大致结果,返回值的计算逻辑可见ApproximateEvaluator的子类

countByValue(): Map[T, Long] rdd实现为map(value => (value, null)).countByKey() 本质上是一次简单的combineByKey,返回Map,会全load进driver的内存里,需要数据集规模较小

countByValueApprox() 同countApprox()

countApproxDistinct() 实验性方法,用streamlib库实现的HyperLogLog做

zipWithIndex(): RDD[(T, Long)]/zipWithUniqueId(): RDD[(T, Long)] 与生成的index做zip操作

take(num): Array[T] 扫某个分区

first() 即take(1)

top(n)(ordering) 每个分区内传入top的处理函数,得到分区的堆,使用rdd.reduce(),把每个分区的堆合起来,排序,取前n个

max()/min() 特殊的reduce,传入max/min比较函数

saveAsXXXXX 输出存储介质

checkpoint 显示cp声明

特殊RDD
PairRDDFunctions
rdd api 备注
combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C): RDD[(K, C)] 传统MR定义拆分,重要基础api

aggregateByKey[U](zeroValue: U, seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)] rdd里,把zeroValue转成了一个createCombiner方法,然后调用了combineByKey()。本质上两者是一样的。

foldByKey(zeroValue: V, func: (V, V) => V): RDD[(K, V)] func即被当作mergeValue,又被当作mergeCombiners,调用了combineByKey()

sampleByKey() 生成一个与key相关的sampleFunc,调用rdd.mapPartitionsWithIndex(sampleFunc)

reduceByKey() 调用combineByKey

reduceByKeyLocally(func: (V, V) => V): Map[K, V] rdd实现为self.mapPartitions(reducePartition).reduce(mergeMaps) reducePartition是在每个分区生成一个HashMap,mergeMaps是合并多个HashMap

countByKey() rdd实现为mapValues(_ => 1L).reduceByKey(_ + _).collect().toMap

countByKeyApprox() rdd实现为map(_._1).countByValueApprox

countApproxDistinctByKey() 类似rdd的countApproxDistinct方法,区别是把方法作用在了combineByKey里面

groupByKey() 简单的combineByKey实现

partitionBy(partitioner) 为rdd设置新的分区结构

join(RDD[(K, W)]): RDD[(K, (V, W))] rdd实现为cogroup(other, partitioner).flatMapValues(…)

leftOuterJoin(…) 实现同上,只是flatMapValues里面遍历两个rdd,yield出结果的判断逻辑变了下
rightOuterJoin(…) 同上
fullOuterJoin(…) 同上
collectAsMap() rdd实现为collect().foreach(pairToMap)
mapValues(f: V => U) 一种简单的map()操作
flatMapValues(f: V => Iterable[U]) 一种简单的map()操作
cogroup(RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))] 做集合性操作的基础api,包括各种join、求交等
subtractByKey(RDD[(K, W)]): RDD[(K, V)] 从原来的rdd里排除右侧有的keys
lookup(key: K): Seq[V] rdd实现的时候,然后分区是基于key的,那比较高效可以直接遍历对应分区,否则全部遍历。全部遍历的实现为filter(._1 == key).map(._2).collect()
saveAsXXX 写外部存储
keys() 一种简单的map()操作
values() 一种简单的map()操作
AsyncRDDActions
countAsync, collectAsync, takeAsync, foreachAsync, foreachPartitionAsync
OrderedRDDFunctions
针对RDD[K: Ordering, V]
rdd api 备注
sortByKey() 见rdd.sortBy()里的解释
filterByRange(lower: K, upper: K) 当rdd分区是RangePartition的时候可以做这样的filter
DoubleRDDFunctions
针对RDD[Double]
rdd api 备注
sum() rdd实现是reduce(_ + _)
stats() rdd实现是mapPartitions(nums => Iterator(StatCounter(nums))).reduce((a, b) => a.merge(b)) StatCounter在一次遍历里统计出中位数、方差、count三个值,merge()是他内部的方法
mean() rdd实现是stats().mean
variance()/sampleVariance() rdd实现是stats().variance
stdev()/sampleStdev() rdd实现是stats().stdev 求标准差
meanApprox()/sumApprox() 调用runApproximateJob
histogram() 比较复杂的计算,rdd实现是先mapPartitions再reduce,包含几次递归

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值