凸函数 3种定义的等价性

在证明等价性之前,我们需要先引入一个概念 就是 “单调”。

如果一个函数是单调的,则满足

<\bigtriangledown f(x)- \bigtriangledown f(y), x-y> \geq 0

然后我们开始证明三定义的等价性。

首先我们写出

\int_{0}^{1}(x-y)^{T}\bigtriangledown ^{2}f(tx+(1-t)y )dt =\int_{0}^{1}(x-y)^{T}\bigtriangledown ^{2}f(t(x-y)+y )dt =\bigtriangledown f(x) - \bigtriangledown f(y)

如果函数是凸函数,则根据定义3,我们可以得到

<\bigtriangledown f(x) -\bigtriangledown f(x), x-y> \geq 0 

即梯度是单调的。现在我们假设函数是单调的,看看能不能推出函数是凸函数

接着仿照上面的方式,我们可以得到 

\int_{0}^{1}(x-y)^{T}\bigtriangledown f(tx+(1-t)y )dt =\int_{0}^{1}(x-y)^{T}\bigtriangledown f(t(x-y)+y )dt = f(x) - f(y)

这里我们整理一下上面的公式 

f(y) + \int_{0}^{1}(x-y)^{T}\bigtriangledown f(t(x-y)+y )dt = f(x) 

 这里,我我们已知函数是单调的,可以得到

< \bigtriangledown f(t(x-y)+y ) - \bigtriangledown f(y ), t(x-y))> = < \bigtriangledown f(t(x-y)+y ) - \bigtriangledown f(y ), (x-y))> \geq 0 

这里因为t 是一个0-1 之间的数

于是根据上面的不等式我们可以得到

\int_{0}^{1}(x-y)^{T}\bigtriangledown f(t(x-y)+y )dt \geq \int_{0}^{1}(x-y)^{T}\bigtriangledown f(y )dt = (x-y)^{T}\bigtriangledown f(y )

然后我们得到

f(y) +(x-y)^{T}\bigtriangledown f(y )dt \leq f(x)

这是凸函数的定义2

至此,我们证明了三个定义是等价的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值