在证明等价性之前,我们需要先引入一个概念 就是 “单调”。
如果一个函数是单调的,则满足
然后我们开始证明三定义的等价性。
首先我们写出
如果函数是凸函数,则根据定义3,我们可以得到
即梯度是单调的。现在我们假设函数是单调的,看看能不能推出函数是凸函数
接着仿照上面的方式,我们可以得到
这里我们整理一下上面的公式
这里,我我们已知函数是单调的,可以得到
这里因为t 是一个0-1 之间的数
于是根据上面的不等式我们可以得到
然后我们得到
这是凸函数的定义2
至此,我们证明了三个定义是等价的