关于梯度下降法的步长-从函数的 smooth 性质出发

我们在前面的时候提到了梯度下降法。我们简单说了一下步长。今天我们填上这个坑。我们根据函数的smooth 性质,聊一下这个步长该怎么取。

首先我们回忆一下函数是\beta-smooth, 则函数满足:

f(y) \leq f(x)+< \bigtriangledown f(x), y-x >+\frac{\beta}{2}||y-x||^{2}

这个意思就是呢函数的值是会有一个上界的。

梯度下降法中呢,我们自变量更新的规则有

x^{t+1} = x^{t} +(-a\bigtriangledown f(x^{t}))

所以我们令 y= x^{t+1}, x=x^{t}

f(x^{t+1}) \leq f(x^{t}) + <\bigtriangledown f(x^{t}), -a\bigtriangledown f(x^{t})>+\frac{\beta}{2}||-a\bigtriangledown f(x^{t})||^{2} \\ \Rightarrow f(x^{t+1}) \leq f(x^{t}) - a||\bigtriangledown f(x^{t})||^{2}+\frac{\beta a^{2}}{2}||\bigtriangledown f(x^{t})||^{2}

我们观察上面这个式子,如果我们希望梯度下降法每一步都有改进,则我们自然希望

- a||\bigtriangledown f(x^{t})||^{2}+\frac{\beta a^{2}}{2}||\bigtriangledown f(x^{t})||^{2} \leq 0 \\ \Rightarrow - a+\frac{\beta a^{2}}{2}\leq 0 \\ \Rightarrow a(\frac{\beta a}{2}-1) \leq 0

通常步长是大于0的,因此上式要满足则

\frac{\beta a}{2}-1 \leq 0 \\ \Rightarrow a \leq \frac{2}{\beta}

通常我们取步长为\frac{1}{\beta}, 因此此时| a(\frac{\beta a}{2}-1) |最大,函数的improvement最大。因此,如果我们知道了函数的平滑参数之后,那么我们就可以很方便的确定梯度下降法的步长啦。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值