无聊时总结总结算法之01递归

  1. (1)阶乘
    n! = n * (n-1) * (n-2) * …* 1(n>0)
//first problem 阶乘n!
int jiecheng(int n)
{
    int sum=1;
    if(n>=1)
        sum = n * jiecheng(n-1);
    else
        return(1);
    return sum;


}
  1. (2)河内塔问题
    这里写图片描述这里写图片描述
//second problem  河内塔问题
/*
       (1)把1座上(n-1)个盘子借助3座移到2座。
       (2)把1座上第n个盘子移动3座。
       (3)把2座上(n-1)个盘子借助1座移动3座。
       如果用heneita(n,a,b,c)表示把1座n个盘子借助2座移动到3座。
        (1)步上是 heneita(n-1,1,3,2)
        (2)cout<<"盘子是从"<<a<<"移动到"<<c<<endl;
        (3)步上是heneita(n-1,2,1,3)
*/

void heneita(int n, int a, int b, int c)
{
    if(1==n)
        cout<<"盘子是从"<<a<<"移动到"<<c<<endl;
    else
    {


        //one
        heneita(n-1 , a ,c , b);
        //two
        cout<<"盘子是从"<<a<<"移动到"<<c<<endl;
        //three
        heneita(n-1, b, a ,c);
    }
}

(3)全排列
如1,2,3三个元素的全排列为:

1,2,3

1,3,2

2,1,3

2,3,1

3,1,2

3,2,1

//thrid problem 全排列
/*
void swap(int &a,int &b)
{
    a= a^b;
    b= b^a;
    a= a^b;
}
这是错的?
void swap(int a,int b)
{
    a=a^b;
    b=b^a;
    a=a^b;
}
这是对的!!!
*/
/*
void swap(int &a,int &b)
{

    int temp;
    temp = a;
    a = b;
    b = temp;

}
//对的!!!!
*/
void swap(int *a,int *b)
{
    *a=*a^*b;
    *b=*b^*a;
    *a=*a^*b;
}
//对的!!!

void quanpailie(int* list,int start, int end)
{
    if(start == end-1)
    {
        for(int i=0;i<end;i++)
            cout<<list[i]<<"  ";
            cout<<"\n";

    }
    else
    {
        for(int i=start;i<end;i++)
        {
            swap(list[start],list[i]);
            //start 移动一位
            quanpailie(list,start+1,end);
            //再换回来
            swap(list[start],list[i]);

        }


    }

}

(4)斐波那契数列
斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

int fibonacci(int timeN)
{
    if(1==timeN || 2==timeN)
        return 1;
    else
        return fibonacci(timeN-1) + fibonacci(timeN-2);
}

(5) 八皇后问题
问题:
经典的八皇后问题,即在一个8*8的棋盘上放8个皇后,使得这8个皇后无法互相攻击( 任意2个皇后不能处于同一行,同一列或是对角线上),输出所有可能的摆放情况。

解析:

8皇后是个经典的问题,如果使用暴力法,每个格子都去考虑放皇后与否,一共有264 种可能。所以暴力法并不是个好办法。由于皇后们是不能放在同一行的, 所以我们可以去掉“行”这个因素,即我第1次考虑把皇后放在第1行的某个位置, 第2次放的时候就不用去放在第一行了,因为这样放皇后间是可以互相攻击的。 第2次我就考虑把皇后放在第2行的某个位置,第3次我考虑把皇后放在第3行的某个位置, 这样依次去递归。每计算1行,递归一次,每次递归里面考虑8列, 即对每一行皇后有8个可能的位置可以放。找到一个与前面行的皇后都不会互相攻击的位置, 然后再递归进入下一行。找到一组可行解即可输出,然后程序回溯去找下一组可靠解。

我们用一个一维数组来表示相应行对应的列,比如c[i]=j表示, 第i行的皇后放在第j列。如果当前行是r,皇后放在哪一列呢?c[r]列。 一共有8列,所以我们要让c[r]依次取第0列,第1列,第2列……一直到第7列, 每取一次我们就去考虑,皇后放的位置会不会和前面已经放了的皇后有冲突。 怎样是有冲突呢?同行,同列,对角线。由于已经不会同行了,所以不用考虑这一点。 同列:c[r]==c[j]; 同对角线有两种可能,即主对角线方向和副对角线方向。 主对角线方向满足,行之差等于列之差:r-j==c[r]-c[j]; 副对角线方向满足, 行之差等于列之差的相反数:r-j==c[j]-c[r]。 只有满足了当前皇后和前面所有的皇后都不会互相攻击的时候,才能进入下一级递归。

http://blog.csdn.net/hackbuteer1/article/details/6657109
[牛人的 N皇后问题的两个最高效的算法](http://blog.csdn.net/hackbuteer1/article/details/6657109)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值