题目描述
给定两个整数 L 和 R ,找到闭区间 [L, R] 范围内,计算置位位数为质数的整数个数。
(注意,计算置位代表二进制表示中1的个数。例如 21 的二进制表示 10101 有 3 个计算置位。还有,1 不是质数。)
示例 1:
输入: L = 6, R = 10
输出: 4
解释:
6 -> 110 (2 个计算置位,2 是质数)
7 -> 111 (3 个计算置位,3 是质数)
9 -> 1001 (2 个计算置位,2 是质数)
10-> 1010 (2 个计算置位,2 是质数)
示例 2:
输入: L = 10, R = 15
输出: 5
解释:
10 -> 1010 (2 个计算置位, 2 是质数)
11 -> 1011 (3 个计算置位, 3 是质数)
12 -> 1100 (2 个计算置位, 2 是质数)
13 -> 1101 (3 个计算置位, 3 是质数)
14 -> 1110 (3 个计算置位, 3 是质数)
15 -> 1111 (4 个计算置位, 4 不是质数)
注意:
L, R 是 L <= R 且在 [1, 10^6] 中的整数。
R - L 的最大值为 10000。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/prime-number-of-set-bits-in-binary-representation
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路
看到题目时,第一想法这是个 hard 吧,既要用欧拉筛筛出素数,又要用位运算技巧算出二进制中1的个数
8、欧拉筛 9、位运算快速计算二进制1的个数
然后看了看是 easy,那就是自己想复杂了。
看了看注意,范围是[1,106],220 > 106,那么二进制下最大的数长度也只有20位,这样就不用使用欧拉筛了。
那么只使用一个位运算技巧就好了,这样就很简单了
遍历从 L 到 R 每个数,计算二进制下 1 的个数,然后判断这个数字是否为质数,为质数就加一。
反思错误
这道题没有错误,
新学到了 Integer.bitCount() 方法(这个方法直接计算二级制 1 的个数,官方这么用的)
Java代码
class Solution {
public int countPrimeSetBits(int left, int right) {
int res = 0;
for(int i=left;i<=right;++i){
if(jundge(cal(i))) ++res;
}
return res;
}
boolean jundge(int cnt) {
return (cnt==2||cnt==3||cnt==5||cnt==7||cnt==11||cnt==13||cnt==17||cnt==19);
}
int cal(int num) {
int cnt = 0;
while(num!=0) {
++cnt;
num &= num-1;
}
return cnt;
}
}
执行结果
执行用时:6 ms, 在所有 Java 提交中击败了 60.31% 的用户
内存消耗:35.1 MB, 在所有 Java 提交中击败了 76.01% 的用户