labelimg使用超详细教程
一、Labelimg基础介绍
LabelImg是一款开源的图像标注工具,主要用于训练机器学习和深度学习模型时的数据预处理阶段。它使用Python编写,并且基于Qt框架进行图形界面设计。LabelImg可以用于创建矩形框(边界框)或者自定义形状的多边形标签,这在目标检测、物体识别等应用场景中非常有用。
1.1 主要特点
(1)易于安装和使用 :LabelImg只需要简单的命令行指令即可完成安装,并且提供了一个图形用户界面,使得标注过程更加直观。
(2)支持多种图像格式:可以读取JPEG, PNG 和其他常见的图片文件格式。
(3)强大的编辑功能:除了基本的创建、移动和删除标签操作外,还提供了如调整大小、旋转等功能来满足不同需求。
(4)数据导出:支持将标注结果以XML(Pascal VOC)、YOLO等格式保存下来,便于后续的数据处理和训练模型使用。
1.2 使用场景
(1) 训练基于深度学习的目标检测算法时需要大量带有标签的图像作为输入;
(2) 用于创建数据集来训练机器视觉任务中的分类器或者分割网络;
(3) 在计算机视觉领域内进行研究或开发项目时帮助快速生成高质量标注的数据集;
总之,LabelImg是一个非常实用且功能全面的工具,对于那些希望手动标记大量图片以供深度学习模型使用的开发者来说尤其有用。
二、Labelimg的安装及使用
2.1 安装
打开控制台,在控制台直接输入下面命令即可下载:
pip install labelimg
2.2 使用
2.2.1 启动
在命令框输入如下命令,可直接启动:
labelimg
启动后的界面如下:
2.2.2 使用详细步骤
步骤1:依次单机“View” —>“Auto Save mode”,自动保存;
步骤2:单机“Open Dir” ,选择一个文件夹,这个文件夹中存放有你要标注的图像,图中我的文件夹是“images”,然后单机“选择文件夹”;
单机“选择文件夹”后界面如下:
步骤3:单机“Change Save Dir” ,选择一个文件夹,这个文件夹中是要存放你标注后的标签文件,图中我的文件夹是“labels”,然后单机“选择文件夹”;
步骤4:单机“yolo” 选择你要标注的格式,图中默认是YOLO格式 ;
步骤5:单机“Create RectBox” (或者按快捷键“W”)开始标注,后面持续贴标签时,请直接按快捷键“W”更快速 ;
步骤6:先画框,再在弹出的窗口里面输入标签名,最后单机“OK”即可。
步骤7:贴完当前的图像后,单机单机图中的“Next Image”或者单机快捷键“F”(这个最常用),标注下一张;
步骤8:重复步骤7,即可贴完所有数据。
2.2.3 标签文件介绍
贴完标签后,标签文件在你选择的贴标文件存放目录下,我的标签文件存放在文件夹“labels”下面,这下面有两种txt文件,一种是以图像名称命名的标签文件,还有一个classes.txt标签名索引文件。
标签文件内容如下,其中除了标签外,每一个数值都进行了归一化。
classes.txt文件内容如下,里面存放的是类别名:
三、 labelimg常用快捷键
LabelImg 提供了一系列便捷的键盘快捷键来帮助用户更高效地进行图像标注工作。以下是一些常用的 LabelImg 快捷键:
-
创建边界框:
w
或者W
:切换到绘制矩形(默认工具)。
-
保存与加载:
Ctrl + S
或者Command + S
(macOS):保存当前文件的标注信息。
-
撤销和重做:
Ctrl +z
:撤销最近的操作。
-
文件和目录操作:
Ctrl +r
或者Ctrl +R
:打开指定图片或XML文件所在的目录。
-
显示设置:
Ctrl +f
或者Ctrl +F
:切换到全屏模式,便于更清晰地查看图像细节。