Lucene学习篇之查询词汇方式

前言:

本案例所引用的jar以及搜索的文档内容均在https://blog.csdn.net/qq_15076569/article/details/83031572基础之上进行


import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.Term;
import org.apache.lucene.queryparser.classic.MultiFieldQueryParser;
import org.apache.lucene.queryparser.classic.ParseException;
import org.apache.lucene.queryparser.classic.QueryParser;
import org.apache.lucene.search.*;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.apache.tools.ant.taskdefs.condition.IsFalse;
import org.wltea.analyzer.lucene.IKAnalyzer;

import java.io.File;
import java.io.IOException;
import java.io.Reader;

public class LunceneSearch {

    public static void main(String[] args) throws IOException, ParseException {
        //1.执行查询
        //创建单个查询对象
        QueryParser queryParser = new QueryParser("content",new IKAnalyzer());
        Query query = queryParser.parse("大墓碑");
        query(query);
        //2.词条查询
        //2.1词条查询的词条是不可在分割的,也就是一个索引中能完全匹配到的一个完整的词
        //2.2使用场景:主要是针对不可在分割的字段,例如id
        TermQuery termQuery = new TermQuery(new Term("content","好吃"));
        System.out.println("------------词条查询--------------");
        query(termQuery);
        //3.通配符查询
        //通配符:
        //*:  代表多个字符
        //?: 代表一个占位符
        WildcardQuery wildcardQuery = new WildcardQuery(new Term("content", "*蓝瘦*"));
        System.out.println("------------通配符查询--------------");
        query(wildcardQuery);
        //4.模糊查询
        /**
         * 模糊查询:
         *      指的是通过替换, 补位, 移动 能够在二次切换内查询数据即可返回
         *      参数1: term  指定查询的字段和内容
         *      参数2: int n   表示最大编辑的次数  最大2
         *
         */
        FuzzyQuery fuzzyQuery = new FuzzyQuery(new Term("content", "比蓝瘦"),2);
        System.out.println("------------模糊查询--------------");
        query(fuzzyQuery);
        //5.数值范围查询
        /**
         * 获取NumericRangeQuery的方式:
         *      通过提供的静态方法获取:
         *          NumericRangeQuery.newIntRange()
         *          NumericRangeQuery.newFloatRange()
         *          NumericRangeQuery.newDoubleRange()
         *          NumericRangeQuery.newLongRange()
         *
         *
         * 数值范围查询:
         *      参数1: 指定要查询的字段
         *      参数2: 指定要查询的开始值
         *      参数3: 指定要查询的结束值
         *      参数4: 是否包含开始
         *      参数5: 是否包含结束
         */

        NumericRangeQuery numericRangeQuery =NumericRangeQuery.newIntRange("id",0,4,false,false);
        System.out.println("-----------数值范围查询--------------");
        query(numericRangeQuery);
        //6.组合查询
        NumericRangeQuery<Integer> query1 = NumericRangeQuery.newIntRange("id", 1, 2, true, false);
        NumericRangeQuery<Integer> query2 = NumericRangeQuery.newIntRange("id", 1, 2, false, true);
        BooleanQuery booleanQuery = new BooleanQuery();
        booleanQuery.add(query1, BooleanClause.Occur.SHOULD);
        booleanQuery.add(query2, BooleanClause.Occur.SHOULD);
        query(booleanQuery);
    }

    public static void query(Query query) throws IOException {
        //1.创建查询核心对象
        DirectoryReader directoryReader = DirectoryReader.open(FSDirectory.open(new File("E://test")));
        IndexSearcher indexSearcher = new IndexSearcher(directoryReader);

        //2.执行查询
        TopDocs topDocs = indexSearcher.search(query, 10);
        //3.解析结果
        System.out.println("查询总结果个数:"+topDocs.totalHits);
        ScoreDoc[] scoreDocs = topDocs.scoreDocs;//获取得分文档集合
        for (ScoreDoc scoreDoc : scoreDocs) {
            int docId = scoreDoc.doc;//文档ID
            float score = scoreDoc.score;//文档得分;约接近1匹配度越高
            //根据id获取文档
            Document document = indexSearcher.doc(docId);
            String content = document.get("content");
            String title = document.get("title");
            System.out.println(score+","+content+","+title);
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值