简单介绍TensorFlow(Python)如何调用Matlab产生的mat格式文件

简单介绍TensorFlow如何与matlab联合使用,Matlab对数据进行预处理(统一像素尺寸,加标签),然后给予TensorFlow训练,测试,验证!

import tensorflow as tf

from scipy.io import loadmat as load
导入python的库函数用于加载mat格式文件

train_data = load('C:\\Data22\\train_data.mat')
test_data = load('C:\\Data22\\test_data.mat')
validation_data = load('C:\\Data22\\validation.mat')
加载相应的mat文件,注意文件路径是 \\ 隔开而不是 \

train_x_data=train_data['train_x_data']
train_y_labels=train_data['train_y_labels']
读取训练集中的数据和对应标签

test_x_data=test_data['test_x_data']
test_y_labels=test_data['test_y_labels']
读取测试集中的数据和对应标签

validation_x_data=validation_data['validation_x_data']

validation_y_labels=validation_data['validation_y_labels']

读取验证集中的数据和对应标签


上述数据均是在matlab里面处理好的,每个文件包含数据和对应的标签,分别读取出来,用于后续使用!

发布了2 篇原创文章 · 获赞 2 · 访问量 8270
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览