#connect to tableau server
import tabpy_client
client = tabpy_client.Client('http://localhost:9004/')
#def function #deploy 函数到tableau
def clustering(x, y):
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
X = np.column_stack([x, y])
X = StandardScaler().fit_transform(X)
db = DBSCAN(eps=1, min_samples=3).fit(X)
return db.labels_.tolist()
client.deploy('clustering',clustering,'Returns cluster Ids for each data point specified by the pairs in x and y',override = True)
print('deployed done!')
#def annother function kmeans
def kmeans_clustering(x,y):
import numpy as np
from sklearn.preprocessing import StandardScaler
X = np.column_stack([x, y])
X = StandardScaler().fit_transform(X)
from sklearn.cluster import KMeans #导入K均值聚类算法
k = 4 #需要进行的聚类类别数
kmodel = KMeans(n_clus