最近又去pandas官网复习了map, applymap and apply的用法和区别
1.apply()
df = pd.DataFrame([[4, 9],] * 3, columns=[‘A’, ‘B’])
df
A B
0 4 9
1 4 9
2 4 9
df.apply(np.sqrt)
A B
0 2.0 3.0
1 2.0 3.0
2 2.0 3.0
df.apply(np.sum, axis=0)
A 12
B 27
dtype: int64
df.apply(np.sum, axis=1)
0 13
1 13
2 13
dtype: int64
可以看出,当想让方程作用在一维的向量上时,可以使用apply
// An highlighted blockfhgjfg
In [116]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['U', 'O', 'T', 'Or'])
In [117]: frame
Out[117]:
b d e
U -0.029638 1.081563 1.280300
O 0.647747 0.831136 -1.549481
T 0.513416 -0.884417 0.195343
Or -0.485454 -0.477388 -0.309548
In [118]: f = lambda x: x.max() - x.min()
In [119]: frame.apply(f)
Out[119]:
b 1.133201
d 1.965980
e 2.829781
dtype: float64
var foo = 'bar';
# applymap()
如果想让方程作用于DataFrame中的每一个元素,可以使用applymap().用法如下所示#
In [120]: format = lambda x: '%.2f' % x
In [121]: frame.applymap(format)
Out[121]:
b d e
U -0.03 1.08 1.28
O 0.65 0.83 -1.55
T 0.51 -0.88 0.20
Or -0.49 -0.48 -0.31
map()
map()只要是作用将函数作用于一个Series的每一个元素,用法如下所示
In [122]: frame['e'].map(format)
Out[122]:
U 1.28
O -1.55
T 0.20
Or -0.31
Name: e, dtype: object