pandas指定列数据归一化


max_min_scaler = lambda x : (x-np.min(x))/(np.max(x)-np.min(x))

train_df['average_montly_hours']=train_df[['average_montly_hours']].apply(max_min_scaler)
train_df

函数

def Data_normalization(train):
    max_min_scaler = lambda x : (x-np.min(x))/(np.max(x)-np.min(x))
    dest_feature=['TransactionDT','TransactionAmt', 'card1','card2','card3','card5']
    for name in dest_feature:
        train_df[name]=train_df[[name]].apply(max_min_scaler)
    return train_df
train_df=Data_normalization(train_df)
train_df
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追梦小狂魔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值