pandas归一化某一列_pandas 数据归一化以及行删除例程的方法

本文介绍了如何使用Pandas库对数据进行归一化处理,将数值范围映射到-1到1之间,并展示了如何根据缺失值比例删除行。此外,还提供了处理包含字符串标签列的示例。
摘要由CSDN通过智能技术生成

#coding:utf8

import pandas as pd

import numpy as np

from pandas import Series,DataFrame

# 如果有id列,则需先删除id列再进行对应操作,最后再补上

# 统计的时候不需要用到id列,删除的时候需要考虑

# delete row

def row_del(df, num_percent, label_len = 0):

#print list(df.count(axis=1))

col_num = len(list(list(df.values)[1])) - label_len # -1为考虑带标签

if col_num<0:

print 'Error'

#print int(col_num*num_percent)

return df.dropna(axis=0, how='any', thresh=int(col_num*num_percent))

# 如果有字符串类型,则报错

# data normalization -1 to 1

# label_col: 不需考虑的类标,可以为字符串或字符串列表

# 数值类型统一到float64

def data_normalization(df, label_col = []):

lab_len = len(label_col)

print label_col

if lab_len>0:

df_temp = df.drop(label_col, axis = 1)

df_lab 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值