LeetCode-1337. The K Weakest Rows in a Matrix [C++][Java]

LeetCode-1337. The K Weakest Rows in a Matrixicon-default.png?t=M0H8https://leetcode.com/problems/the-k-weakest-rows-in-a-matrix/

题目描述

You are given an m x n binary matrix mat of 1's (representing soldiers) and 0's (representing civilians). The soldiers are positioned in front of the civilians. That is, all the 1's will appear to the left of all the 0's in each row.

A row i is weaker than a row j if one of the following is true:

  • The number of soldiers in row i is less than the number of soldiers in row j.
  • Both rows have the same number of soldiers and i < j.

Return the indices of the k weakest rows in the matrix ordered from weakest to strongest.

Example 1:

Input: mat = 
[[1,1,0,0,0],
 [1,1,1,1,0],
 [1,0,0,0,0],
 [1,1,0,0,0],
 [1,1,1,1,1]], 
k = 3
Output: [2,0,3]
Explanation: 
The number of soldiers in each row is: 
- Row 0: 2 
- Row 1: 4 
- Row 2: 1 
- Row 3: 2 
- Row 4: 5 
The rows ordered from weakest to strongest are [2,0,3,1,4].

Example 2:

Input: mat = 
[[1,0,0,0],
 [1,1,1,1],
 [1,0,0,0],
 [1,0,0,0]], 
k = 2
Output: [0,2]
Explanation: 
The number of soldiers in each row is: 
- Row 0: 1 
- Row 1: 4 
- Row 2: 1 
- Row 3: 1 
The rows ordered from weakest to strongest are [0,2,3,1].

Constraints:

  • m == mat.length
  • n == mat[i].length
  • 2 <= n, m <= 100
  • 1 <= k <= m
  • matrix[i][j] is either 0 or 1.

解题思路

【C++】

1.priority_queue

class Solution {
public:
    vector<int> kWeakestRows(vector<vector<int>>& mat, int k) {
        typedef pair<int, int> P;
        priority_queue<P, vector<P>, greater<P>>pq;
        vector<int> vec;
        for(int i=0;i<mat.size();i++){
            int count=0;
            for(int j=0;j<mat[i].size();j++){
                if(mat[i][j]==1){count++;}
            }
            pq.push({count,i});
        }
        for(int i = 0; i<k; i++){
            vec.push_back(pq.top().second);
            pq.pop();
        }
        return vec;
    }
};

2. vector

class Solution {
public:
    vector<int> kWeakestRows(vector<vector<int>>& mat, int k) {
        vector<int> res;
        vector<pair<int,int>> pq;
        for(int i=0;i<mat.size();i++){
            int count=0;
            for(int j=0;j<mat[i].size();j++){
                if(mat[i][j]==1){count++;}
            }
            pq.push_back({i, count});
        }
        auto cmp = [](const pair<int,int> &a,const pair<int,int> &b) {
            return a.second != b.second ? a.second < b.second : a.first < b.first;
        };
        sort(pq.begin(), pq.end(), cmp);
        for (int i=0;i<k;i++) {res.push_back(pq[i].first);}
        return res;
    }
};

【Java】

1. HashMap + heap + PriorityQueue

class Solution {
    public int[] kWeakestRows(int[][] mat, int k) {
        Map<Integer, Integer> map = new HashMap<>();
        for (int i =0;i<mat.length;i++) {
            int sum = 0;
            for(int j =0; j<mat[i].length; j++) {sum += mat[i][j];}
            map.put(i, sum);
        }   
        Queue<Integer> heap = new PriorityQueue<>((n1, n2)-> map.get(n2) == map.get(n1) ? n2 - n1 : map.get(n2) - map.get(n1));
        for(int n: map.keySet()) {
            heap.add(n);
            if(heap.size() > k) heap.poll();
        }
        int[] res = new int[k];
        for(int i=k-1; i>=0; i--) {res[i] = heap.poll();}
        return res;
    }
}

2. HashMap + List +Collection

class Solution {
    public int[] kWeakestRows(int[][] mat, int k) {
        Map<Integer, Integer> m = new HashMap<>();
        for (int i=0; i<mat.length; i++){
            int count=0, j=0;
            while (j < mat[i].length) {count += mat[i][j++];}
            m.put(i,count);
        }
        List<Integer> l = new ArrayList<>();
        for(Map.Entry<Integer,Integer> i : m.entrySet()) {l.add(i.getKey());}
        Collections.sort(l, (k1,k2) -> {return m.get(k1)==m.get(k2) ? k1-k2 : m.get(k1)-m.get(k2);});
        int[] res = new int[k]; int index=0;
        for (int i=0; i<k; i++) {res[i] = l.get(i);}
        return res;
    }
}

参考文献

【1】c++优先队列(priority_queue)用法详解_吕白_的博客-CSDN博客_c++ 优先队列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贫道绝缘子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值